Issue
J. Phys. Colloques
Volume 47, Number C7, Novembre 1986
33rd International Field Emission Symposium / 33ème Symposium International d'Emission de Champ
Page(s) C7-351 - C7-358
DOI https://doi.org/10.1051/jphyscol:1986760
33rd International Field Emission Symposium / 33ème Symposium International d'Emission de Champ

J. Phys. Colloques 47 (1986) C7-351-C7-358

DOI: 10.1051/jphyscol:1986760

AN ELECTROHYDRODYNAMIC ANALYSIS OF THE EQUILIBRIUM SHAPE AND STABILITY OF STRESSED CONDUCTING FLUIDS : APPLICATION TO LMIS

M. CHUNG1, P.H. CUTLER1, T.E. FEUCHTWANG1, E. KAZES1 et N.M. MISKOVSKY2

1  Department of Physics, The Pennsylvania State University, University Park, PA 16802, U.S.A.
2  Department of Physics, Altoona Campus, The Pennsylvania State University, Altoona, PA 16603, U.S.A.


Résumé
Une analyse electrohydrostatique du modèle du cône de Taylor utilisant à la fois les critères de Taylor et de Zeleny fait ressortir plusieurs contradictions. On peut montrer qu'un traitement dynamique de la géométrie d'équilibre et de la stability peut en résoudre les contradictions apparentes. Et précisément, en utilisant l'équation electrodynamique linéarise et des corrections au 1st ordre, on montre qu'au seuil d'instabilité le cône prend une forme, "cuspidale". La tension critique de sevil d'instabilite est obtenue pour le gallium a partir de la relation de dispersion. La valeur calculee de 5.8 kV correspond bien aux mesures expérimentales de ~4-7 kV. Enfin, le caractère très localisé de l'instabilité est en accord avec les observations expérimentales obtenues en TEM par Sudraud, et. al.


Abstract
An electrohydrostatic analysis of the Taylor cone model, using both the Taylor and Zeleny stability criteria has revealed several inconsistencies in the model. It is shown that a dynamical treatment of the equilibrium shape and stability can resolve these apparent contradictions in the Taylor model. Specifically, using the linearized electrohydrodynamic equations with corrections up to first-order, it is shown that, at the onset of instability, the cone deforms into a cuspidal shape. From the dispersion relations, the critical voltage for the onset of instability is obtained for liquid gallium. The calculated value of 5.8 kV compares well with experimental values of ~4-7 kV. Finally, the instability is predicted to be highly localized, which agrees with the experimental observations in the TEM images or Sudraud, et. al.