Issue |
J. Phys. Colloques
Volume 40, Number C2, Mars 1979
International Conference on The Applications of The Mössbauer Effect
|
|
---|---|---|
Page(s) | C2-301 - C2-301 | |
DOI | https://doi.org/10.1051/jphyscol:19792105 |
J. Phys. Colloques 40 (1979) C2-301-C2-301
DOI: 10.1051/jphyscol:19792105
SECOND ORDER PHASE TRANSITION IN THE FERRIMAGNETIC THIOSPINEL FeCr2S4
L. Brossard, J.L. Dormann, L. Goldstein, P. Gibart and P. RenaudinLaboratoire de Magnétisme, C.N.R. S., 1, Place Aristide Briand, 92190 Bellevue, France.
Résumé
FeCr2S4, de structure ferrimagnétique spinelle, reste cubique jusqu'à 4,2 K. Il présente une transition de phase du second ordre vers 13 K qui affecte les spectres Mössbauer : les inter- prétations antérieures /2-5/ sont basées pour la plupart sur un modèle de champ cristallin à un ion supposant les électrons d du Fe2+ A localisés . Une décomposition préalable de nos spectres entre 1,5 K et 300 K en singulets montre que les solutions à 1 site antérieurement suggérées ne sont pas uniques. De plus, les intensités expérimentales des raies diffèrent des intensités théoriques et les largeurs des raies présentent des variations incohérentes avec T. Une reproduction cohérente nécessite deux sites Mössbauer : à T > 13 K, les deux sites d'intensité égale sont caractérisés par Vzz > 0, η = 0, θ = ψ = 0 et par Vzz < 0, η = 1, θ = ψ = &Pi/2 A T< 13 K, le site le plus intense (0.75) est tel que Vzz < 0, η ~ 0.25, θ = &Pi/2, ψ = 0 et l'autre tel que Vzz < 0, η ~ 0.25, θ = ψ = &Pi/2. Les électrons 3d du Fe IIA sont mieux décrits dans un modèle de bande étroite /6/ doublement dégénérée : à T > 13 K, le 6ème électron du fer relaxe entre les deux états de bande, l'un de symétrie (x2 - y2), l'autre de symétrie (3z2 - r2 ) hybridé avec l'état excité du CrIII en B. A T < 13 K, seul ce dernier état est occupé. Ceci traduitle passage d'un paramagnétisme orbital (T > 13 K) à un ferromagnétisme orbital (T < 13 K) par analogie avec /7/.
Abstract
The spinel ferrimagnet FeCr2S4 exhibits a second order phase transition around 13 K anomaly, in the specific heat /1/. It remains cubic down to 4.2 K. Previous interpretations of Mössbauer spectra have suggested : a static to dynamic Jahn Teller transition /2/, an antiferrodistortive transition /3/, an induced E.F.G. by the magnetic order /4/ or by a lattice distorsion due to magnetostrictive effects/5/. Most of these interpretations were based upon a single ion crystal field approach, the 3d electrons of Fe2+ A were supposed to be localized. Mössbauer studies on stoichiometric polycrystalline FeCr2S4 were carried out from 1.5 to 300 K. An initial decomposition of the spectra into singlets shows that the previous single site solutions /2-5/ are not unique; moreover the experimental and calculated line intensities do not agree and the different linewidths show incoherent variations with T. A more reliable two sites solution is suggested. At T > 13 K, the two sites have the same intensity and are caracterized by Vzz > 0, η = 0, θ = ψ = 0 and Vzz < 0, η = 1, θ = ψ = &Pi/2. At T < 13 K, the two sites are caracterized by Vzz > 0, η ~ 0.25, θ = &Pi/2 but ψ = 0 and ψ = &Pi/2 are respectively related with the higher (0.75) and the lower (0.25) site interisities . Moreover, the experimental mean linewidth, the hyperfine magnetic fields and the isomer shifts show discontinuities at 13 K. Finally, low temperature X rays patterns show no dilatation anomaly and no discontinuity of the ∂a/∂T values (a : unit cell parameter). These features are explained assuming a narrow doubly degenerate d band of FeIIA, owing to the low mobility of 3d electrons /6/. The sixth 3d electron of FeIIA is assumed to occupy orbital band states with |ε> or (|θ> + |ψCrII B>) symmetry, owing to the hybridization of |θ> with the B site energetically close CrII state. At T > 13 K, the sixth 3d electron relaxes between the |ε> and the hybridized |θ> orbital band states , leading to two equal intensity sites. At T < 13 K, only the hybridized |θ> orbital band state is occupied. This corresponds to an orbital paramagnetism for T > 13 K and to a ferromagnetic orbital ordering for T < 13 K. This is related with the fact that an Hubbard Hamiltonian in the atomic limit leads not only to spin ordering but also to orbital ordering /7/. Moreover, the transition shows at T < 13 K a slow relaxation of the E.F.G. The coupling of the band with the phonons at T < 13 K is different from alinear and weak dynamic Jahn Teller effect as for example for the Asite dilute Fe2+.