La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
R. LOZI
J. Phys. Colloques, 39 C5 (1978) C5-9-C5-10
Citations de cet article :
147 articles | Pages :
SRB Measures for Polygonal Billiards with Contracting Reflection Laws
Gianluigi Del Magno, João Lopes Dias, Pedro Duarte, José Pedro Gaivão and Diogo Pinheiro Communications in Mathematical Physics 329 (2) 687 (2014) https://doi.org/10.1007/s00220-014-1960-x
A Hybrid Chaos-Particle Swarm Optimization Algorithm for the Vehicle Routing Problem with Time Window
Wenbin Hu, Huanle Liang, Chao Peng, Bo Du and Qi Hu Entropy 15 (4) 1247 (2013) https://doi.org/10.3390/e15041247
Poincarй recurrence theory and its applications to nonlinear physics
Vadim S. Anishchenko and Sergey V. Astakhov Uspekhi Fizicheskih Nauk 183 (10) 1009 (2013) https://doi.org/10.3367/UFNr.0183.201310a.1009
Global Analysis of Dynamic Models in Economics and Finance
Christian Mira Global Analysis of Dynamic Models in Economics and Finance 337 (2013) https://doi.org/10.1007/978-3-642-29503-4_13
Homeomorphisms group of normed vector space: Conjugacy problems and the Koopman operator
Mickaël D. Chekroun and Jean Roux Discrete & Continuous Dynamical Systems - A 33 (9) 3957 (2013) https://doi.org/10.3934/dcds.2013.33.3957
Poincaré recurrence theory and its applications to nonlinear physics
V S Anishchenko and S V Astakhov Physics-Uspekhi 56 (10) 955 (2013) https://doi.org/10.3367/UFNe.0183.201310a.1009
Afraimovich–Pesin dimension for Poincaré recurrences in one- and two-dimensional deterministic and noisy chaotic maps
Sergey V. Astakhov and Vadim S. Anishchenko Physics Letters A 376 (47-48) 3620 (2012) https://doi.org/10.1016/j.physleta.2012.10.049
HYPERBOLIC-LIKE PROPERTIES OF POPP'S ATTRACTOR
ANDRZEJ STEFAŃSKI, JERZY WOJEWODA, AGNIESZKA CHUDZIK and TOMASZ KAPITANIAK International Journal of Bifurcation and Chaos 22 (08) 1250187 (2012) https://doi.org/10.1142/S0218127412501878
Bifurcations in the Lozi map
V Botella–Soler, J M Castelo, J A Oteo and J Ros Journal of Physics A: Mathematical and Theoretical 44 (30) 305101 (2011) https://doi.org/10.1088/1751-8113/44/30/305101
LMI-based robust control of uncertain discrete-time piecewise affine systems
Zhiyuan Liu, Yahui Gao and Hong Chen Journal of Control Theory and Applications 8 (4) 496 (2010) https://doi.org/10.1007/s11768-010-8094-2
Fascination of chaos
A.Yu. Loskutov Uspekhi Fizicheskih Nauk 180 (12) 1305 (2010) https://doi.org/10.3367/UFNr.0180.201012d.1305
ORBIT SHIFTED SHADOWING PROPERTY OF GENERALIZED LOZI MAPS
Akio Sakurai Taiwanese Journal of Mathematics 14 (4) (2010) https://doi.org/10.11650/twjm/1500405971
Mansour Ojaghi and Amir Bagheri 1 (2009) https://doi.org/10.1109/INMIC.2009.5383164
Compound windows of the Hénon-map
Edward N. Lorenz Physica D: Nonlinear Phenomena 237 (13) 1689 (2008) https://doi.org/10.1016/j.physd.2007.11.014
Parameter-shifted shadowing property of Lozi maps
Shin Kiriki and Teruhiko Soma Dynamical Systems 22 (3) 351 (2007) https://doi.org/10.1080/14689360701321892
Insights into the algebraic structure of Lorenz-like systems using feedback circuit analysis and piecewise affine models
Christophe Letellier, Gleison F. V. Amaral and Luis A. Aguirre Chaos: An Interdisciplinary Journal of Nonlinear Science 17 (2) 023104 (2007) https://doi.org/10.1063/1.2645725
Maximally complex simple attractors
J. C. Sprott Chaos: An Interdisciplinary Journal of Nonlinear Science 17 (3) (2007) https://doi.org/10.1063/1.2781570
Nonlinear Dynamics of Chaotic and Stochastic Systems
Vadim S. Anishchenko, Vladimir Astakhov, Tatjana Vadivasova, Alexander Neiman and Lutz Schimansky-Geier Springer Series in Synergetics, Nonlinear Dynamics of Chaotic and Stochastic Systems 109 (2006) https://doi.org/10.1007/978-3-540-38168-6_2
Statistical properties of dynamical chaos
Vadim S. Anishchenko, Tat'yana E. Vadivasova, G.A. Okrokvertskhov and Galina I. Strelkova Uspekhi Fizicheskih Nauk 175 (2) 163 (2005) https://doi.org/10.3367/UFNr.0175.200502c.0163
A. Kato and T. Kohda 1477 (2005) https://doi.org/10.1109/ISCAS.2005.1464878
The Theory of Chaotic Attractors
Marek Rychlik The Theory of Chaotic Attractors 190 (2004) https://doi.org/10.1007/978-0-387-21830-4_13
Grammatical complexity for two-dimensional maps
Ryouichi Hagiwara and Akira Shudo Journal of Physics A: Mathematical and General 37 (44) 10545 (2004) https://doi.org/10.1088/0305-4470/37/44/006
An algorithm to prune the area-preserving Hénon map
Ryouichi Hagiwara and Akira Shudo Journal of Physics A: Mathematical and General 37 (44) 10521 (2004) https://doi.org/10.1088/0305-4470/37/44/005
Peculiarities of the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors in the presence of noise
Vadim S. Anishchenko, Tatjana E. Vadivasova, Andrey S. Kopeikin, Jürgen Kurths and Galina I. Strelkova Physical Review E 65 (3) (2002) https://doi.org/10.1103/PhysRevE.65.036206
Trends in Industrial and Applied Mathematics
René Lozi Applied Optimization, Trends in Industrial and Applied Mathematics 72 275 (2002) https://doi.org/10.1007/978-1-4613-0263-6_12
Time-optimal chaos control by center manifold targeting
John Starrett Physical Review E 66 (4) (2002) https://doi.org/10.1103/PhysRevE.66.046206
An analytical approach to chaos in Lorenz-like systems. A class of dynamical equations
R Festa, A Mazzino and D Vincenzi Europhysics Letters (EPL) 56 (1) 47 (2001) https://doi.org/10.1209/epl/i2001-00486-2
Dynamics of a Hénon–Lozi-type map
M.A. Aziz-Alaoui, Carl Robert and Celso Grebogi Chaos, Solitons & Fractals 12 (12) 2323 (2001) https://doi.org/10.1016/S0960-0779(00)00192-2
Chaotic tags and asynchronous data transmission
Yu. V. Andreev, A. S. Dmitriev, S. V. Emets, et al. Technical Physics Letters 26 (7) 617 (2000) https://doi.org/10.1134/1.1262931
Statistical properties of 2-D generalized hyperbolic attractors
V. S. Afraimovich, N. I. Chernov and E. A. Sataev Chaos: An Interdisciplinary Journal of Nonlinear Science 5 (1) 238 (1995) https://doi.org/10.1063/1.166073
Chun-Mei Yang, Tao Yang and Kan-Yu Zhang 297 (1994) https://doi.org/10.1109/CNNA.1994.381663
Symbolic analysis of attractor geometry for the Lozi map
Wei-Mou Zheng and Jun-xian Liu Physical Review E 50 (4) 3241 (1994) https://doi.org/10.1103/PhysRevE.50.3241
Hausdorff dimension from the minimal spanning tree
Vicent J. Martínez, R. Domínguez-Tenreiro and L. J. Roy Physical Review E 47 (1) 735 (1993) https://doi.org/10.1103/PhysRevE.47.735
New type of heteroclinic tangency in two-dimensional maps
Yoshihiro Yamaguchi and Kiyotaka Tanikawa Journal of Statistical Physics 64 (3-4) 741 (1991) https://doi.org/10.1007/BF01048313
Scaling of periodic orbits in two-dimensional chaotic systems
Ditza Auerbach Physical Review A 41 (12) 6692 (1990) https://doi.org/10.1103/PhysRevA.41.6692
Recycling of strange sets: II. Applications
R Artuso, E Aurell and P Cvitanovic Nonlinearity 3 (2) 361 (1990) https://doi.org/10.1088/0951-7715/3/2/006
On the symmetry-breaking bifurcation of chaotic attractors
K. G. Szab� and T. T�l Journal of Statistical Physics 54 (3-4) 925 (1989) https://doi.org/10.1007/BF01019782
On Lyapunov and dimension spectra of 2D attractors, with an application to the Lozi map
P Grassberger Journal of Physics A: Mathematical and General 22 (5) 585 (1989) https://doi.org/10.1088/0305-4470/22/5/020
Topological and metric properties of Hénon-type strange attractors
Predrag Cvitanović, Gemunu H. Gunaratne and Itamar Procaccia Physical Review A 38 (3) 1503 (1988) https://doi.org/10.1103/PhysRevA.38.1503
Scaling structure of strange attractors
Ditza Auerbach, Ben O’Shaughnessy and Itamar Procaccia Physical Review A 37 (6) 2234 (1988) https://doi.org/10.1103/PhysRevA.37.2234
Stochastic Aspects of Classical and Quantum Systems
Y. Levy Lecture Notes in Mathematics, Stochastic Aspects of Classical and Quantum Systems 1109 103 (1985) https://doi.org/10.1007/BFb0101539
Coupling sensitivity of chaos and the Lyapunov dimension: The case of coupled two-dimensional maps
Hiroaki Daido Physics Letters A 110 (1) 5 (1985) https://doi.org/10.1016/0375-9601(85)90221-X
The Theory of Chaotic Attractors
P. Collet and Y. Levy The Theory of Chaotic Attractors 222 (1984) https://doi.org/10.1007/978-0-387-21830-4_14
Fractal dimension of the strange attractor in a piecewise linear two-dimensional map
T. Tél Physics Letters A 97 (6) 219 (1983) https://doi.org/10.1016/0375-9601(83)90751-X
Invariant curves, attractors, and phase diagram of a piecewise linear map with chaos
Tam�s T�l Journal of Statistical Physics 33 (1) 195 (1983) https://doi.org/10.1007/BF01009756
On the construction of stable and unstable manifolds of two-dimensional invertible maps
T. T�l Zeitschrift f�r Physik B Condensed Matter 49 (2) 157 (1982) https://doi.org/10.1007/BF01314752
STRANGE ATTRACTORS FOR THE LOZI MAPPINGS
Michal Misiurewicz Annals of the New York Academy of Sciences 357 (1) 348 (1980) https://doi.org/10.1111/j.1749-6632.1980.tb29702.x
Pages :
101 à 147 sur 147 articles