Numéro
J. Phys. Colloques
Volume 51, Numéro C7, Décembre 1990
International Workshop on Geometry and Interfaces
Page(s) C7-163 - C7-168
DOI https://doi.org/10.1051/jphyscol:1990716
International Workshop on Geometry and Interfaces

J. Phys. Colloques 51 (1990) C7-163-C7-168

DOI: 10.1051/jphyscol:1990716

H. HOPF'S QUADRATIC DIFFERENTIAL AND A WEIERSTRASS FORMULA FOR GENERAL SURFACES AND SURFACES OF CONSTANT MEAN CURVATURE

F. GACKSTATTER

I. Mathematisches Institut der Freien Universität Berlin, Arnimallee 3, D-1000 Berlin 33, F.R.G.


Abstract
Using H. Hopf's quadratic differential Φ dw2 we find a representation formula for general surfaces in ℝ3 similar to the classical Weierstrass formula for minimal surfaces. For surfaces of constant mean curvature with prescribed Φ dw2 an integrability condition with the properties of a conservation equation is derived. We continue the work of K. Kenmotsu on surfaces of prescribed mean curvature.



© EDP Sciences 1990