Numéro
J. Phys. Colloques
Volume 49, Numéro C8, Décembre 1988
Proceedings of the International Conference on Magnetism
Page(s) C8-1555 - C8-1556
DOI https://doi.org/10.1051/jphyscol:19888712
Proceedings of the International Conference on Magnetism

J. Phys. Colloques 49 (1988) C8-1555-C8-1556

DOI: 10.1051/jphyscol:19888712

SEQUENCES OF MAGNETIC PHASES IN ANISOTROPIC SYSTEMS WITH CUBIC SYMMETRY

Z. Pawlowska, J. Oliker, G. F. Kventsel et J. Katriel

Department of Chemistry, Technion-Israel Institute of Technology, 32000 Haifa, Israel


Abstract
The infinite-range magnetization equation is solved for a three-component spin system involving cubic anisotropy of fourth, sixth, eighth and tenth degree. The longest possible non-reentrant sequences of second order transitions are I → (X) → (XY) → (X = Y) → (X = Y, Z) → (X = Y = Z) and I → (X) → (XY) → (XYZ) → (X = Y = Z), where the symbols denote non-vanishing magnetization components, for the eighth and tenth order Hamiltonians, respectively.