Numéro |
J. Phys. Colloques
Volume 49, Numéro C8, Décembre 1988
Proceedings of the International Conference on Magnetism
|
|
---|---|---|
Page(s) | C8-1555 - C8-1556 | |
DOI | https://doi.org/10.1051/jphyscol:19888712 |
Proceedings of the International Conference on Magnetism
J. Phys. Colloques 49 (1988) C8-1555-C8-1556
DOI: 10.1051/jphyscol:19888712
Department of Chemistry, Technion-Israel Institute of Technology, 32000 Haifa, Israel
J. Phys. Colloques 49 (1988) C8-1555-C8-1556
DOI: 10.1051/jphyscol:19888712
SEQUENCES OF MAGNETIC PHASES IN ANISOTROPIC SYSTEMS WITH CUBIC SYMMETRY
Z. Pawlowska, J. Oliker, G. F. Kventsel et J. KatrielDepartment of Chemistry, Technion-Israel Institute of Technology, 32000 Haifa, Israel
Abstract
The infinite-range magnetization equation is solved for a three-component spin system involving cubic anisotropy of fourth, sixth, eighth and tenth degree. The longest possible non-reentrant sequences of second order transitions are I → (X) → (XY) → (X = Y) → (X = Y, Z) → (X = Y = Z) and I → (X) → (XY) → (XYZ) → (X = Y = Z), where the symbols denote non-vanishing magnetization components, for the eighth and tenth order Hamiltonians, respectively.