Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Plasmonically Generated Tryptophan Radical Anion on Gold Nanoparticles Investigated by Combined Surface-Enhanced Raman Scattering and Density Functional Theory Calculations

Chelsea M. Zoltowski, Rémy F. Lalisse, Christopher M. Hadad and Zachary D. Schultz
The Journal of Physical Chemistry C 125 (50) 27596 (2021)
https://doi.org/10.1021/acs.jpcc.1c07840

A needle probe to detect surface enhanced Raman scattering (SERS) within solid specimen

Srismrita Basu, Hsuan-Chao Hou, Debsmita Biswas, et al.
Review of Scientific Instruments 88 (2) (2017)
https://doi.org/10.1063/1.4975183

Single fiber surface enhanced Raman scattering probe

Srismrita Basu, HsuanChao Hou, Debsmita Biswas, et al.
Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 35 (6) (2017)
https://doi.org/10.1116/1.4990697

Clinical probe utilizing surface enhanced Raman scattering

Jeonghwan Kim, Dooyoung Hah, Theda Daniels-Race and Martin Feldman
Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 32 (6) (2014)
https://doi.org/10.1116/1.4896479

Structure Enhancement Factor Relationships in Single Gold Nanoantennas by Surface-Enhanced Raman Excitation Spectroscopy

Samuel L. Kleinman, Bhavya Sharma, Martin G. Blaber, et al.
Journal of the American Chemical Society 135 (1) 301 (2013)
https://doi.org/10.1021/ja309300d

Nanorough gold for enhanced Raman scattering

Jeonghwan Kim, Kyung-Nam Kang, Anirban Sarkar, et al.
Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 31 (6) 06FE02 (2013)
https://doi.org/10.1116/1.4826701

Surface-Enhanced Raman Spectroelectrochemistry of TTF-Modified Self-Assembled Monolayers

Walter F. Paxton, Samuel L. Kleinman, Ashish N. Basuray, J. Fraser Stoddart and Richard P. Van Duyne
The Journal of Physical Chemistry Letters 2 (10) 1145 (2011)
https://doi.org/10.1021/jz200523q

Plasmonic Nanoparticle Arrays with Nanometer Separation for High-Performance SERS Substrates

Jesse Theiss, Prathamesh Pavaskar, Pierre M. Echternach, Richard E. Muller and Stephen B. Cronin
Nano Letters 10 (8) 2749 (2010)
https://doi.org/10.1021/nl904170g

Raman investigations of TiO2 nanotube substrates covered with thin Ag or Cu deposits

A. Roguska, A. Kudelski, M. Pisarek, M. Lewandowska, M. Dolata and M. Janik‐Czachor
Journal of Raman Spectroscopy 40 (11) 1652 (2009)
https://doi.org/10.1002/jrs.2314

Density Functional Study and Normal-Mode Analysis of the Bindings and Vibrational Frequency Shifts of the Pyridine−M (M = Cu, Ag, Au, Cu+, Ag+, Au+, and Pt) Complexes

De-Yin Wu, Bin Ren, Yu-Xiong Jiang, Xin Xu and Zhong-Qun Tian
The Journal of Physical Chemistry A 106 (39) 9042 (2002)
https://doi.org/10.1021/jp025970i

Normal mode analysis of surface adsorbed and coordinated pyridine molecule

G. Mizutani and S. Ushioda
The Journal of Chemical Physics 91 (1) 598 (1989)
https://doi.org/10.1063/1.457661

Nonlocal corrections to Fresnel optics: How to extend d-parameter theory beyond jellium models

W. L. Schaich, and Wei Chen
Physical Review B 39 (15) 10714 (1989)
https://doi.org/10.1103/PhysRevB.39.10714

New Techniques for the Study of Electrodes and Their Reactions

P.A. Christensen and A. Hamnett
Comprehensive Chemical Kinetics, New Techniques for the Study of Electrodes and Their Reactions 29 1 (1989)
https://doi.org/10.1016/S0069-8040(08)70316-9

Novel cylindrical rotating electrode for anaerobic surface‐enhanced Raman spectroscopy

Peter Hildebrandt, Kathleen A. Macor and Roman S. Czernuszewicz
Journal of Raman Spectroscopy 19 (1) 65 (1988)
https://doi.org/10.1002/jrs.1250190110

Attenuated-total-reflection study of pyridine overlayers on silver films

J. Giergiel, C. E. Reed, S. Ushioda, and J. C. Hemminger
Physical Review B 31 (6) 3323 (1985)
https://doi.org/10.1103/PhysRevB.31.3323

Ft-Ir spectrometry for the solid/solution interface

M.A. Habib and J.O'M. Bockris
Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 180 (1-2) 287 (1984)
https://doi.org/10.1016/0368-1874(84)83587-X

Surface‐enhanced Raman spectra of aromatic amino acids and proteins adsorbed by silver hydrosols

Igor R. Nabiev, Vladimir A. Savchenko and Evgeniy S. Efremov
Journal of Raman Spectroscopy 14 (6) 375 (1983)
https://doi.org/10.1002/jrs.1250140604

Surface enhanced Raman scattering (SERS) from pyridine on silver‐UHV interfaces: Excitation spectra

I. Pockrand, J. Billmann and A. Otto
The Journal of Chemical Physics 78 (11) 6384 (1983)
https://doi.org/10.1063/1.444698

Observation of Surface States on Ag(100) by Infrared and Visible Electroreflectance Spectroscopy

D. M. Kolb, W. Boeck, and S. H. Liu
Physical Review Letters 47 (26) 1921 (1981)
https://doi.org/10.1103/PhysRevLett.47.1921

Surface enhanced Raman spectra: A critical review of the image dipole description

Peter R. Hilton and David W. Oxtoby
The Journal of Chemical Physics 72 (12) 6346 (1980)
https://doi.org/10.1063/1.439158

Orientational specificity of Raman scattering from molecules adsorbed on silver electrodes

Craig S. Allen and Richard P. van Duyne
Chemical Physics Letters 63 (3) 455 (1979)
https://doi.org/10.1016/0009-2614(79)80688-0

Enhanced raman scattering by pyridine physisorbed on a clean silver surface in ultra-high vacuum

R.R. Smardzewski, R.J. Colton and J.S. Murday
Chemical Physics Letters 68 (1) 53 (1979)
https://doi.org/10.1016/0009-2614(79)80067-6