The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
D. P. Belanger , B. Farago , V. Jaccarino , A. R. King , C. Lartigue , F. Mezei
J. Phys. Colloques, 49 C8 (1988) C8-1229-C8-1230
This article has been cited by the following article(s):
16 articles
Dynamics of the Blume-Capel model with quenched diluted single-ion anisotropy in the neighborhood of equilibrium states
Gul Gulpinar and Fadil Iyikanat Physical Review E 83 (4) (2011) https://doi.org/10.1103/PhysRevE.83.041101
Relaxation theory of spin-3/2 Ising system near phase transition temperatures
Osman Canko and Mustafa Keskin Chinese Physics B 19 (8) 080516 (2010) https://doi.org/10.1088/1674-1056/19/8/080516
Борелевское пересуммирование $\varepsilon$-разложения динамического индекса $z$ модели A $\phi^4(O(n))$-теории
Mikhail Yur'evich Nalimov, Михаил Юрьевич Налимов, Владимир Андреевич Сергеев, et al. Теоретическая и математическая физика 159 (1) 96 (2009) https://doi.org/10.4213/tmf6335
Relaxational dynamics in 3D randomly diluted Ising models
Martin Hasenbusch, Andrea Pelissetto and Ettore Vicari Journal of Statistical Mechanics: Theory and Experiment 2007 (11) P11009 (2007) https://doi.org/10.1088/1742-5468/2007/11/P11009
Calculations of the dynamical critical exponent using the asymptotic series summation method
A. S. Krinitsyn, V. V. Prudnikov and P. V. Prudnikov Theoretical and Mathematical Physics 147 (1) 561 (2006) https://doi.org/10.1007/s11232-006-0063-z
Local and cluster critical dynamics of the 3d random-site Ising model
D. Ivaneyko, J. Ilnytskyi, B. Berche and Yu. Holovatch Physica A: Statistical Mechanics and its Applications 370 (2) 163 (2006) https://doi.org/10.1016/j.physa.2006.03.010
Ageing properties of critical systems
Pasquale Calabrese and Andrea Gambassi Journal of Physics A: Mathematical and General 38 (18) R133 (2005) https://doi.org/10.1088/0305-4470/38/18/R01
Critical dynamics of diluted relaxational models coupled to a conserved density
M. Dudka, R. Folk, Yu. Holovatch and G. Moser Physical Review E 72 (3) (2005) https://doi.org/10.1103/PhysRevE.72.036107
Universal aging properties at a disordered critical point
Gregory Schehr and Raja Paul Physical Review E 72 (1) (2005) https://doi.org/10.1103/PhysRevE.72.016105
Critical dynamics and effective exponents of magnets with extended impurities
V. Blavats’ka, M. Dudka, R. Folk and Yu. Holovatch Physical Review B 72 (6) (2005) https://doi.org/10.1103/PhysRevB.72.064417
Dynamic structure factor of the three-dimensional Ising model with purely relaxational dynamics
Pasquale Calabrese, Victor Martín-Mayor, Andrea Pelissetto and Ettore Vicari Physical Review E 68 (1) (2003) https://doi.org/10.1103/PhysRevE.68.016110
Universality in the off-equilibrium critical dynamics of the three-dimensional diluted Ising model
G. Parisi, F. Ricci-Tersenghi and J. J. Ruiz-Lorenzo Physical Review E 60 (5) 5198 (1999) https://doi.org/10.1103/PhysRevE.60.5198
Specific heat, thermal diffusivity, and thermal conductivity ofFeF2at the Néel temperature
M. Marinelli, F. Mercuri and D. P. Belanger Physical Review B 51 (14) 8897 (1995) https://doi.org/10.1103/PhysRevB.51.8897
Neutron-scattering study of the random-exchange Ising systemFexZn1−xF2near the percolation threshold
D. P. Belanger and H. Yoshizawa Physical Review B 47 (9) 5051 (1993) https://doi.org/10.1103/PhysRevB.47.5051
Relaxation of the excess magnetization of random-field-induced metastable domains inFe0.47Zn0.53F2
S-J. Han, D. P. Belanger, W. Kleemann and U. Nowak Physical Review B 45 (17) 9728 (1992) https://doi.org/10.1103/PhysRevB.45.9728
Dynamic critical behavior of the random-exchange Ising systemFe0.9Zn0.1F2determined via Mössbauer spectroscopy
N. Rosov, C. Hohenemser and M. Eibschütz Physical Review B 46 (6) 3452 (1992) https://doi.org/10.1103/PhysRevB.46.3452