Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Environment-Induced Crack Initiation in Aluminum Alloys: Experimental Studies Since the 1950s and Future Opportunities

N. J. Henry Holroyd, Tim L. Burnett, John J. Lewandowski and Geoffrey M. Scamans
Corrosion 79 (8) 850 (2023)
https://doi.org/10.5006/4320

Lithium salts as active corrosion inhibitors for aluminum substrates

Zachary Bergseth, Xiaoning Qi, Vinod Upadhyay and Dante Battocchi
Applied Surface Science Advances 16 100432 (2023)
https://doi.org/10.1016/j.apsadv.2023.100432

The Effect of pH on the Corrosion Protection of Aluminum Alloys in Lithium-carbonate-containing NaCl Solutions

E. Michailidou, P. Visser, J.M.C Mol, A. Kosari, H. Terryn, K. Baert and Y. Gonzalez-Garcia
Corrosion Science 110851 (2022)
https://doi.org/10.1016/j.corsci.2022.110851

Mechanism of Passive Layer Formation on AA2024-T3 from Alkaline Lithium Carbonate Solutions in the Presence of Sodium Chloride

Peter Visser, Yaiza Gonzalez-Garcia, Johannes M. C. Mol and Herman Terryn
Journal of The Electrochemical Society 165 (2) C60 (2018)
https://doi.org/10.1149/2.1011802jes

Study of the formation of a protective layer in a defect from lithium-leaching organic coatings

P. Visser, A. Lutz, J.M.C. Mol and H. Terryn
Progress in Organic Coatings 99 80 (2016)
https://doi.org/10.1016/j.porgcoat.2016.04.028

Correlation of stress corrosion cracking behaviour with electrical conductivity and open circuit potential in Al‐Li‐Cu‐Mg‐Zr alloys

K. S. Ghosh, K. Das and U. K. Chatterjee
Materials and Corrosion 58 (3) 181 (2007)
https://doi.org/10.1002/maco.200603987

Stress corrosion cracking behaviour of Al‐Li alloy 8090‐T8171 plate exposed to various synthetic environments

R. Braun
Materials and Corrosion 55 (4) 241 (2004)
https://doi.org/10.1002/maco.200303722

Inhibition de la corrosion de l'alliage d'aluminium 6063 au moyen de composés inorganiques dans une solution de chlorure de sodium à 3 %

L Bazzi, R Salghi, E Zine, S El Issami, S Kertit and B Hammouti
Canadian Journal of Chemistry 80 (1) 106 (2002)
https://doi.org/10.1139/v01-189

Corrosion cracking susceptibility in Al-Li-Cu alloys 2090 and 2096 as a function of isothermal aging time

Brian J Connolly and John R Scully
Scripta Materialia 42 (11) 1039 (2000)
https://doi.org/10.1016/S1359-6462(00)00333-X

Surface film characteristics of Al-Li-Cu-Mg alloys in 0·1 N NaOH

C Thakur and R Balasubramaniam
Bulletin of Materials Science 21 (6) 485 (1998)
https://doi.org/10.1007/BF02790351

Effect of electrolyte temperature on the polarization characteristics of an Al-Li-Cu-Mg alloy in NaOH

C Thakur and R Balasubramaniam
Bulletin of Materials Science 20 (1) 125 (1997)
https://doi.org/10.1007/BF02753219

Stress corrosion cracking of an Al-Li alloy

Z. F. Wang, Z. Y. Zhu, Y. Zhang and W. Ke
Metallurgical Transactions A 23 (S1) 3337 (1992)
https://doi.org/10.1007/BF03024541

Stress corrosion cracking of an Al-Li alloy

Z. F. Wang, Z. Y. Zhu, Y. Zhang and W. Ke
Metallurgical Transactions A 23 (12) 3337 (1992)
https://doi.org/10.1007/BF02663443

Environmental fatigue of an Al-Li-Cu alloy: part I. Intrinsic crack propagation kinetics in hydrogenous environments

Robert S. Piascik and Richard P. Gangloff
Metallurgical Transactions A 22 (10) 2415 (1991)
https://doi.org/10.1007/BF02665008