Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A Manufacturing Technique for Binary Clathrate Hydrates for Cold and Very Cold Neutron Production

Valentin Czamler, Arnaud Desmedt, Thomas C. Hansen, Richard Wagner and Oliver Zimmer
Materials 18 (2) 298 (2025)
https://doi.org/10.3390/ma18020298

Molecular Dynamics Study of Orientation and Thermal Motion of Guest Molecules in Large Cage of Structure II Hydrate

Shinobu MUSAKA
Journal of the Japan Institute of Energy 104 (4) 25 (2025)
https://doi.org/10.3775/jie.104.25

Amorphous-like thermal conductivity and high mechanical stability of cyclopentane clathrate hydrate

Ove Andersson, Md Saiduzzaman, Paulo H. B. Brant Carvalho and Ulrich Häussermann
Physical Chemistry Chemical Physics 26 (22) 16017 (2024)
https://doi.org/10.1039/D4CP01656D

Theoretical calculations of neutron scattering cross sections for tetrahydrofuran-containing clathrate hydrates at low temperature

Shuqi Xu, Sara Isaline Laporte, Douglas D. DiJulio, et al.
EPJ Web of Conferences 286 06003 (2023)
https://doi.org/10.1051/epjconf/202328606003

Structural and thermal properties of Eu2Ga11Sn35

Wilarachchige D. C. B. Gunatilleke, Mingjian Zhang, Winnie Wong-Ng, Peter Zavalij, Yu-Sheng Chen and George S. Nolas
Journal of Applied Physics 133 (9) (2023)
https://doi.org/10.1063/5.0119852

Recent advances in density functional theory and molecular dynamics simulation of mechanical, interfacial, and thermal properties of natural gas hydrates in Canada

Samuel Mathews, Shaden Daghash, Alejandro Rey and Phillip Servio
The Canadian Journal of Chemical Engineering 100 (9) 2557 (2022)
https://doi.org/10.1002/cjce.24516

Delving into guest-free and He-filled sI and sII clathrate hydrates: a first-principles computational study

Raquel Yanes-Rodríguez, Adriana Cabrera-Ramírez and Rita Prosmiti
Physical Chemistry Chemical Physics 24 (21) 13119 (2022)
https://doi.org/10.1039/D2CP00701K

Physical–Chemical Properties of Compressible Clathrates: A Natural Pressure Shift by Extending the van der Waals and Platteeuw Model

Iuri Soter Viana Segtovich, Fernando de Azevedo Medeiros and Frederico Wanderley Tavares
The Journal of Physical Chemistry C 126 (5) 2839 (2022)
https://doi.org/10.1021/acs.jpcc.1c09715

Structural Characterization of Pyrrolidine–Including Structure II Clathrate Hydrates

Sanehiro Muromachi, Hassan Sharifi, Saman Alavi, John A. Ripmeester and Peter Englezos
Crystal Growth & Design 21 (5) 2828 (2021)
https://doi.org/10.1021/acs.cgd.0c01745

Mechanical properties of polycrystalline tetrahydrofuran hydrates as analogs for massive natural gas hydrates

Masato Kida, Jun Yoneda, Akira Masui, et al.
Journal of Natural Gas Science and Engineering 96 104284 (2021)
https://doi.org/10.1016/j.jngse.2021.104284

Heat Capacity, Thermal Expansion Coefficient, and Grüneisen Parameter of CH4, CO2, and C2H6 Hydrates and Ice Ih via Density Functional Theory and Phonon Calculations

Samuel L. Mathews, Phillip D. Servio and Alejandro D. Rey
Crystal Growth & Design 20 (9) 5947 (2020)
https://doi.org/10.1021/acs.cgd.0c00630

Sixty Years of the van der Waals and Platteeuw Model for Clathrate Hydrates—A Critical Review from Its Statistical Thermodynamic Basis to Its Extensions and Applications

Fernando de Azevedo Medeiros, Iuri Soter Viana Segtovich, Frederico Wanderley Tavares and Amadeu K. Sum
Chemical Reviews 120 (24) 13349 (2020)
https://doi.org/10.1021/acs.chemrev.0c00494

CO2 capture from CH4–CO2 mixture by gas–solid contact with tetrahydrofuran clathrate hydrate

Masato Kida, Hayato Goda, Hirotoshi Sakagami and Hirotsugu Minami
Chemical Physics 538 110863 (2020)
https://doi.org/10.1016/j.chemphys.2020.110863

THF Hydrates as Model Systems for Natural Gas Hydrates: Comparing Their Mechanical and Vibrational Properties

Thomas M. Vlasic, Phillip D. Servio and Alejandro D. Rey
Industrial & Engineering Chemistry Research 58 (36) 16588 (2019)
https://doi.org/10.1021/acs.iecr.9b02698

Molecular Dynamic Simulations of Clathrate Hydrate Anomalous Preservation: The Effect of Coating Clathrate Hydrate Phases

Parisa Naeiji, Tom K. Woo, Saman Alavi and John A. Ripmeester
The Journal of Physical Chemistry C 123 (47) 28715 (2019)
https://doi.org/10.1021/acs.jpcc.9b07769

The thermal properties of binary structure sI clathrate hydrate from molecular dynamics simulation

Hakime Ghafari and Hossein Mohammadi-Manesh
Molecular Simulation 45 (8) 614 (2019)
https://doi.org/10.1080/08927022.2019.1572142

Elucidation of the pressure induced amorphization of tetrahydrofuran clathrate hydrate

Paulo H. B. Brant Carvalho, Amber Mace, Craig L. Bull, et al.
The Journal of Chemical Physics 150 (20) (2019)
https://doi.org/10.1063/1.5083958

Modeling Thermodynamic Properties of Propane or Tetrahydrofuran Mixed with Carbon Dioxide or Methane in Structure-II Clathrate Hydrates

Bin Fang, Fulong Ning, Pinqiang Cao, et al.
The Journal of Physical Chemistry C 121 (43) 23911 (2017)
https://doi.org/10.1021/acs.jpcc.7b06623

Four-Phase Equilibrium Relations Including Clathrate Hydrate Phase in a Ternary System of Xenon, Benzene, and Water

Takeshi Sugahara
Journal of Chemical & Engineering Data 61 (12) 4057 (2016)
https://doi.org/10.1021/acs.jced.6b00541

Micro-Tomographic Investigation of Ice and Clathrate Formation and Decomposition under Thermodynamic Monitoring

Stefan Arzbacher, Jörg Petrasch, Alexander Ostermann and Thomas Loerting
Materials 9 (8) 668 (2016)
https://doi.org/10.3390/ma9080668

Effect of SDS/THF on thermodynamic and kinetic properties of formation of hydrate from a mixture of gases (CH4+C2H6+C3H8) for storing gas as hydrate

Himangshu Kakati, Ajay Mandal and Sukumar Laik
Journal of Energy Chemistry 25 (3) 409 (2016)
https://doi.org/10.1016/j.jechem.2016.01.018

Promoting effect of Al2O3/ZnO based nanofluids stabilized by SDS surfactant on CH4+C2H6+C3H8 hydrate formation

Himangshu Kakati, Ajay Mandal and Sukumar Laik
Journal of Industrial and Engineering Chemistry (2016)
https://doi.org/10.1016/j.jiec.2016.01.014

Phase equilibria, solubility and modeling study of CO 2 /CH 4 + tetra- n -butylammonium bromide aqueous semi-clathrate systems

Jonathan Verrett, Jean-Sébastien Renault-Crispo and Phillip Servio
Fluid Phase Equilibria 388 160 (2015)
https://doi.org/10.1016/j.fluid.2014.12.045

Observation of the growth process of icy materials in interparticle spaces: phase-contrast X-ray imaging of clathrate hydrate

Satoshi Takeya, Yoshito Gotoh, Akio Yoneyama, Kazuyuki Hyodo and Tohoru Takeda
Canadian Journal of Chemistry 93 (9) 983 (2015)
https://doi.org/10.1139/cjc-2014-0544

Mechanisms for thermal conduction in hydrogen hydrate

Niall J. English, Paul D. Gorman and J. M. D. MacElroy
The Journal of Chemical Physics 136 (4) (2012)
https://doi.org/10.1063/1.3677189

Effect of electrostatics techniques on the estimation of thermal conductivity via equilibrium molecular dynamics simulation: application to methane hydrate

Niall J. English
Molecular Physics 106 (15) 1887 (2008)
https://doi.org/10.1080/00268970802360348

Imaging and density mapping of tetrahydrofuran clathrate hydrates by phase-contrast x-ray computed tomography

Satoshi Takeya, Kazumasa Honda, Taro Kawamura, et al.
Applied Physics Letters 90 (8) 081920 (2007)
https://doi.org/10.1063/1.2709645

Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data

William F. Waite, Lauren Y. Gilbert, William J. Winters and David H. Mason
Review of Scientific Instruments 77 (4) 044904 (2006)
https://doi.org/10.1063/1.2194481

A thermodynamic investigation of dynamical disorder in Phase II of CBr4

Darek Michalski and Mary Anne White
The Journal of Chemical Physics 103 (14) 6173 (1995)
https://doi.org/10.1063/1.470444

Raman spectroscopic analyses of the growth process of CO2 hydrates

T. Uchida, A. Takagi, J. Kawabata, S. Mae and T. Hondoh
Energy Conversion and Management 36 (6-9) 547 (1995)
https://doi.org/10.1016/0196-8904(95)00064-K