The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
E. TATSUMOTO , T. OKAMOTO , H. FUJII , C. INOUE
J. Phys. Colloques, 32 C1 (1971) C1-550-C1-551
This article has been cited by the following article(s):
62 articles
Synergistic 3d-orbital modulation in dual-doped SmCo5-based alloys: Quantifying electronic synergy for enhanced permanent magnetic performance
Zhi Yan, Cheng Fang, Xujin Zhang, Jianhua Xiao, Fang Wang and Xiaohong Xu Journal of Alloys and Compounds 1034 181408 (2025) https://doi.org/10.1016/j.jallcom.2025.181408
Tuned bi-anisotropy of Y2Co14B nanocrystalline magnetic alloys toward high-frequency applications
Ling-Feng Wang, Ke-Bing Wang, Qi-Ming Chen, Chen Wu, Xin-Hua Wang and Mi Yan Rare Metals 44 (2) 1243 (2025) https://doi.org/10.1007/s12598-024-03104-x
Compositional optimization of rare earth permanent magnetic alloy by machine learning
Lingyao Zhang, Tianhao Su, Yaning Cui, Guanhua Qin, Shihui Yan, Shunbo Hu, Xu Sun, Li Yang, Hang Su and Wei Ren Journal of Magnetism and Magnetic Materials 614 172685 (2025) https://doi.org/10.1016/j.jmmm.2024.172685
Magnetocrystalline anisotropy and giant spontaneous magnetostriction in iron selenide Fe3Se4 studied on single crystals
V.A. Komarova, V.A. Kazantsev, S.N. Mozgovykh, A.S. Volegov, N.V. Selezneva and N.V. Baranov Solid State Sciences 158 107756 (2024) https://doi.org/10.1016/j.solidstatesciences.2024.107756
First-principles calculation of magnetocrystalline anisotropy of Y(Co,Fe,Ni,Cu)5 based on full-potential KKR Green’s function method
Haruki Okumura, Tetsuya Fukushima, Hisazumi Akai and Masako Ogura Solid State Communications 373-374 115257 (2023) https://doi.org/10.1016/j.ssc.2023.115257
Atomic‐Scale Transition Zones Determined Coercivity in Samarium‐Cobalt Based Permanent Magnets
Bingjie Liu, Hui Wang, Hao Xu, Jinghua Liu and Chengbao Jiang Advanced Functional Materials 33 (50) (2023) https://doi.org/10.1002/adfm.202304711
Manipulation of topological spin textures in centrosymmetric rare-earth magnets
Shulan Zuo, Kaiming Qiao, Ying Zhang, Tongyun Zhao, Chengbao Jiang and Baogen Shen Journal of Materials Science & Technology 156 254 (2023) https://doi.org/10.1016/j.jmst.2023.02.024
Spontaneous Topological Magnetic Transitions in NdCo5 Rare‐Earth Magnets
Shulan Zuo, Jun Liu, Kaiming Qiao, et al. Advanced Materials 33 (40) (2021) https://doi.org/10.1002/adma.202103751
Prospects for the development of SmFe12-based permanent magnets with a ThMn12-type phase
P. Tozman, H. Sepehri-Amin and K. Hono Scripta Materialia 194 113686 (2021) https://doi.org/10.1016/j.scriptamat.2020.113686
Handbook of Magnetism and Magnetic Materials
J. Ping Liu, Matthew Willard, Wei Tang, et al. Handbook of Magnetism and Magnetic Materials 1 (2021) https://doi.org/10.1007/978-3-030-63101-7_16-1
Intrinsic hard magnetic properties of Sm(Fe,Co)12−xTix compound with ThMn12 structure
A. Makurenkova, D. Ogawa, P. Tozman, et al. Journal of Alloys and Compounds 861 158477 (2021) https://doi.org/10.1016/j.jallcom.2020.158477
Handbook of Magnetism and Magnetic Materials
J. Ping Liu, Matthew Willard, Wei Tang, et al. Handbook of Magnetism and Magnetic Materials 693 (2021) https://doi.org/10.1007/978-3-030-63210-6_16
Higher-order crystal field and rare-earth magnetism in rare-earth–
Co5
intermetallics
L. V. Pourovskii, J. Boust, R. Ballou, G. Gomez Eslava and D. Givord Physical Review B 101 (21) (2020) https://doi.org/10.1103/PhysRevB.101.214433
Tunability of the spin reorientation transitions with pressure in NdCo5
Santosh Kumar, Christopher E. Patrick, Rachel S. Edwards, et al. Applied Physics Letters 116 (10) 102408 (2020) https://doi.org/10.1063/1.5135640
Torque magnetometry study of the spin reorientation transition and temperature-dependent magnetocrystalline anisotropy in NdCo5
Santosh Kumar, Christopher E Patrick, Rachel S Edwards, et al. Journal of Physics: Condensed Matter 32 (25) 255802 (2020) https://doi.org/10.1088/1361-648X/ab7ad6
Influence of changes in electronic structure on magnetocrystalline anisotropy of YCo5 and related compounds
Ahmad Asali, Josef Fidler and Dieter Suess Journal of Magnetism and Magnetic Materials 485 61 (2019) https://doi.org/10.1016/j.jmmm.2019.04.047
Temperature-dependent magnetocrystalline anisotropy of rare earth/transition metal permanent magnets from first principles: The light
RCo5 (R=Y, La-Gd)
intermetallics
Christopher E. Patrick and Julie B. Staunton Physical Review Materials 3 (10) (2019) https://doi.org/10.1103/PhysRevMaterials.3.101401
Embedded atom potential for Sm–Co compounds obtained by force-matching
A.N. Sobolev, O.A. Golovnia and A.G. Popov Journal of Magnetism and Magnetic Materials 490 165468 (2019) https://doi.org/10.1016/j.jmmm.2019.165468
Electronic structure and magnetic properties of Pr–Co intermetallics:ab initioFP-LAPW calculations and correlation with experiments
Karim Bakkari, Riadh Fersi, El Kebir Hlil, Lotfi Bessais and Najeh Thabet Mliki Journal of Physics: Condensed Matter 30 (9) 095704 (2018) https://doi.org/10.1088/1361-648X/aaaa0f
Intrinsic hard magnetic properties of Sm(Fe 1−x Co x ) 12 compound with the ThMn 12 structure
Y. Hirayama, Y.K. Takahashi, S. Hirosawa and K. Hono Scripta Materialia 138 62 (2017) https://doi.org/10.1016/j.scriptamat.2017.05.029
Rare-earth/transition-metal magnetic interactions in pristine and (Ni,Fe)-doped
YCo5
and
GdCo5
Christopher E. Patrick, Santosh Kumar, Geetha Balakrishnan, et al. Physical Review Materials 1 (2) (2017) https://doi.org/10.1103/PhysRevMaterials.1.024411
Coercivity mechanism in hard magnetic SmCo5/PrCo5bilayers
A K Patra, F Fleischhauer, S Oswald, L Schultz and V Neu Journal of Physics D: Applied Physics 47 (21) 215001 (2014) https://doi.org/10.1088/0022-3727/47/21/215001
Study of the magnetic and electronic properties of nanocrystalline PrCo3by neutron powder diffraction and density functional theory
Khedidja Younsi, Jean-Claude Crivello, Valérie Paul-Boncour, et al. Journal of Physics: Condensed Matter 25 (11) 116001 (2013) https://doi.org/10.1088/0953-8984/25/11/116001
Probing the anisotropy constants of SmCo5 and PrCo5 by Hall resistance measurements in pulsed high magnetic fields up to 47T
E. Stilp, J. Freudenberger, M. Seifert, et al. Journal of Magnetism and Magnetic Materials 324 (9) 1711 (2012) https://doi.org/10.1016/j.jmmm.2011.12.031
The temperature dependent anisotropy constants of epitaxially grown PrCo5+x
A. K. Patra, M. Eisterer, R. Biele, et al. Journal of Applied Physics 108 (7) (2010) https://doi.org/10.1063/1.3490204
Magnetic properties of and from the electronic structure calculations
G.I. Miletić and Ž. Blažina Journal of Magnetism and Magnetic Materials 321 (23) 3888 (2009) https://doi.org/10.1016/j.jmmm.2009.07.049
Metastable, epitaxial PrCo7 films with high energy product
A. K. Patra, V. Neu, S. Fähler, R. Groetzschel and L. Schultz Applied Physics Letters 89 (14) 142512 (2006) https://doi.org/10.1063/1.2361195
The electronic and magnetic properties of Yn+1Co3n+5B2n (n=0, 1, 2, 3, and ∞) systems
A Szajek Journal of Magnetism and Magnetic Materials 185 (3) 322 (1998) https://doi.org/10.1016/S0304-8853(98)00032-8
Microstructural and magnetic investigations into the origins of high coercivity in die‐upset praseodymium–cobalt–carbon based magnets
L. H. Lewis, Wei‐Min Bian, Y. Zhu and D. O. Welch Journal of Applied Physics 79 (1) 351 (1996) https://doi.org/10.1063/1.360837
Handbook of Magnetic Materials
A.V. Andreev Handbook of Magnetic Materials 8 59 (1995) https://doi.org/10.1016/S1567-2719(05)80031-9
Magnetic properties ofRions inRCo5compounds (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er)
Zhao Tie-song, Jin Han-min, Guo Guang-hua, Han Xiu-feng and Chen Hong Physical Review B 43 (10) 8593 (1991) https://doi.org/10.1103/PhysRevB.43.8593
Anisotropy and spin reorientation of a single crystal of PrCo3Ni2
R. Ballou, B. Michellutti and J. Voiron Journal of Applied Physics 69 (8) 5705 (1991) https://doi.org/10.1063/1.347894
Spin‐reorientation phenomenon in pseudobinary (Pr1−xRx)Co5compounds (R=Sm, Gd, Dy, Tb, Ho, and Er) as determined by ac susceptibility measurements
B. M. Ma, E. B. Boltich, S. G. Sankar, et al. Journal of Applied Physics 69 (8) 6061 (1991) https://doi.org/10.1063/1.347770
Compounds Between Rare Earth Elements and 3d, 4d or 5d Elements
H. R. Kirchmayr and E. Burzo Landolt-Börnstein - Group III Condensed Matter, Compounds Between Rare Earth Elements and 3d, 4d or 5d Elements 19d2 274 (1990) https://doi.org/10.1007/10333633_32
Compounds Between Rare Earth Elements and 3d, 4d or 5d Elements
H. R. Kirchmayr and E. Burzo Landolt-Börnstein - Group III Condensed Matter, Compounds Between Rare Earth Elements and 3d, 4d or 5d Elements 19d2 405 (1990) https://doi.org/10.1007/10333633_42
Compounds Between Rare Earth Elements and 3d, 4d or 5d Elements
H. R. Kirchmayr and E. Burzo Landolt-Börnstein - Group III Condensed Matter, Compounds Between Rare Earth Elements and 3d, 4d or 5d Elements 19d2 301 (1990) https://doi.org/10.1007/10333633_34
Compounds Between Rare Earth Elements and 3d, 4d or 5d Elements
H. R. Kirchmayr and E. Burzo Landolt-Börnstein - Group III Condensed Matter, Compounds Between Rare Earth Elements and 3d, 4d or 5d Elements 19d2 261 (1990) https://doi.org/10.1007/10333633_31
Compounds of Rare Earth Elements with Main Group Elements. Part 1
T. Kaneko Landolt-Börnstein - Group III Condensed Matter, Compounds of Rare Earth Elements with Main Group Elements. Part 1 19e1 501 (1990) https://doi.org/10.1007/10332988_103
Spin reorientation phase transitions in RE-Co5hexagonal ferromagnets
O Moze, M R Ibarra, A del Moral, G Marusi and P A Algarabel Journal of Physics: Condensed Matter 2 (27) 6031 (1990) https://doi.org/10.1088/0953-8984/2/27/009
Spin-reorientation transitions in NdCo5and critical effects on the electrical resistivity temperature derivative
J B Sousa, J M Moreira, A Del Moral, P Algarabel and R Ibarra Journal of Physics: Condensed Matter 2 (16) 3897 (1990) https://doi.org/10.1088/0953-8984/2/16/020
Compounds of Rare Earth Elements with Main Group Elements. Part 1
T. Kaneko Landolt-Börnstein - Group III Condensed Matter, Compounds of Rare Earth Elements with Main Group Elements. Part 1 19e1 481 (1990) https://doi.org/10.1007/10332988_96
Critical behavior in spin-reorientation phase transitions: (ErxR1−x)2Fe14B (R=Nd, Dy) magnets
A. del Moral, M. R. Ibarra, C. Marquina, J. I. Arnaudas and P. A. Algarabel Physical Review B 40 (10) 7192 (1989) https://doi.org/10.1103/PhysRevB.40.7192
On the anisotropy energies for YCo5, RCo5, Y2Co17, and R2Co17
H. Takahashi, K. Hikosaka, S. Ohtsuka, et al. Journal of Applied Physics 63 (8) 3595 (1988) https://doi.org/10.1063/1.340705
RETM5and RE2TM17permanent magnets development
Kaplesh Kumar Journal of Applied Physics 63 (6) R13 (1988) https://doi.org/10.1063/1.341084
Thin Films
P. Hansen Landolt-Börnstein - Group III Condensed Matter, Thin Films 19g 276 (1988) https://doi.org/10.1007/10369147_49
Thin Films
P. Hansen Landolt-Börnstein - Group III Condensed Matter, Thin Films 19g 206 (1988) https://doi.org/10.1007/10369147_38
Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals
Satoshi Hirosawa, Yutaka Matsuura, Hitoshi Yamamoto, et al. Journal of Applied Physics 59 (3) 873 (1986) https://doi.org/10.1063/1.336611
Magnetic investigations of (Nd1−xRx)15Fe77B8 and Nd15Fe85−xBx
X.K. Sun, R. Grössinger, R. Eibler and H.R. Kirchmayr Physica B+C 130 (1-3) 300 (1985) https://doi.org/10.1016/0378-4363(85)90244-X
Low temperature magnetic properties of Nd
2
Fe
14
B single crystal
Wang Yi-zhong, Wang Zhen-xi, Gong Wei and Feng Min-ying Chinese Physics Letters 2 (8) 349 (1985) https://doi.org/10.1088/0256-307X/2/8/004
Magnetic anisotropy of rare-earth—transition-metal compounds
Angie Sarkis and Earl Callen Physical Review B 26 (7) 3870 (1982) https://doi.org/10.1103/PhysRevB.26.3870
Giant intrinsic magnetic hardness in SmCo5−xCux
H. Oesterreicher, F. T. Parker and M. Misroch Journal of Applied Physics 50 (6) 4273 (1979) https://doi.org/10.1063/1.326460
Giant intrinsic magnetic hardness due to randomized crystal field interactions in SmNi5−xCux
H. Oesterreicher, F. T. Parker and M. Misroch Journal of Applied Physics 49 (3) 2058 (1978) https://doi.org/10.1063/1.324738
Measurements of the elastic stiffness constants of single‐crystal SmCo5and of liquid‐phase sintered SmCo5permanent magnet material
D. A. Doane Journal of Applied Physics 48 (6) 2591 (1977) https://doi.org/10.1063/1.323980
Hyperfine interactions of Sm in SmCo5
R. L. Streever Physical Review B 12 (11) 4653 (1975) https://doi.org/10.1103/PhysRevB.12.4653
Magnetocrystalline anisotropy of SmCo5and its interpretation on a crystal-field model
S. G. Sankar, V. U. S. Rao, E. Segal, et al. Physical Review B 11 (1) 435 (1975) https://doi.org/10.1103/PhysRevB.11.435
Magnetocrystalline anisotropy of light rare-earth cobalt compounds
H.P. Klein, A. Menth and R.S. Perkins Physica B+C 80 (1-4) 153 (1975) https://doi.org/10.1016/0378-4363(75)90061-3
Magnetic properties of cobalt rare-earth thin films
S. Bendson and J. Judy IEEE Transactions on Magnetics 9 (4) 627 (1973) https://doi.org/10.1109/TMAG.1973.1067702
An analysis of the rare earth contribution to the magnetic anisotropy in RCo5 and R2Co17 compounds
J.E. Greedan and V.U.S. Rao Journal of Solid State Chemistry 6 (3) 387 (1973) https://doi.org/10.1016/0022-4596(73)90228-4
Magnetic Properties of Cobalt‐Samarium with a 24‐MG Oe Energy Product
S. Foner, E. J. McNiff, D. L. Martin and M. G. Benz Applied Physics Letters 20 (11) 447 (1972) https://doi.org/10.1063/1.1654011
Domain‐wall energy in cobalt‐rare‐earth compounds
J. D. Livingston and M. D. McConnell Journal of Applied Physics 43 (11) 4756 (1972) https://doi.org/10.1063/1.1661003
Magnetism of rare-earth elements, alloys, and compounds
J. Rhyne and T. McGuire IEEE Transactions on Magnetics 8 (1) 105 (1972) https://doi.org/10.1109/TMAG.1972.1067267
Domain‐Wall Energy and Coercive Force of Cobalt Rare‐Earth Permanent Magnet Materials
F. F. Westendorp Journal of Applied Physics 42 (13) 5727 (1971) https://doi.org/10.1063/1.1660006