Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Flow laws for ice constrained by 70 years of laboratory experiments

Sheng Fan, Ting Wang, David J. Prior, Thomas Breithaupt, Travis F. Hager and David Wallis
Nature Geoscience 18 (4) 296 (2025)
https://doi.org/10.1038/s41561-025-01661-z

An Experimental Investigation of the Effect of Grain Size on “Dislocation Creep” of Ice

Chao Qi and David L. Goldsby
Journal of Geophysical Research: Solid Earth 126 (9) (2021)
https://doi.org/10.1029/2021JB021824

Quantifying the potential future contribution to global mean sea level from the Filchner–Ronne basin, Antarctica

Emily A. Hill, Sebastian H. R. Rosier, G. Hilmar Gudmundsson and Matthew Collins
The Cryosphere 15 (10) 4675 (2021)
https://doi.org/10.5194/tc-15-4675-2021

Temperature and strain controls on ice deformation mechanisms: insights from the microstructures of samples deformed to progressively higher strains at −10, −20 and −30 °C

Sheng Fan, Travis F. Hager, David J. Prior, Andrew J. Cross, David L. Goldsby, Chao Qi, Marianne Negrini and John Wheeler
The Cryosphere 14 (11) 3875 (2020)
https://doi.org/10.5194/tc-14-3875-2020

Using a composite flow law to model deformation in the NEEM deep ice core, Greenland – Part 2: The role of grain size and premelting on ice deformation at high homologous temperature

Ernst-Jan N. Kuiper, Johannes H. P. de Bresser, Martyn R. Drury, Jan Eichler, Gill M. Pennock and Ilka Weikusat
The Cryosphere 14 (7) 2449 (2020)
https://doi.org/10.5194/tc-14-2449-2020

Using a composite flow law to model deformation in the NEEM deep ice core, Greenland – Part 1: The role of grain size and grain size distribution on deformation of the upper 2207 m

Ernst-Jan N. Kuiper, Ilka Weikusat, Johannes H. P. de Bresser, Daniela Jansen, Gill M. Pennock and Martyn R. Drury
The Cryosphere 14 (7) 2429 (2020)
https://doi.org/10.5194/tc-14-2429-2020

Structural mechanism leading to a ferroelastic glass state: Interpretation of amorphization under pressure

Pierre Tolédano and Denis Machon
Physical Review B 71 (2) (2005)
https://doi.org/10.1103/PhysRevB.71.024210

Ice-age ice-sheet rheology: constraints from the Last Glacial Maximum form of the Laurentide ice sheet

W. Richard Peltier, David L. Goldsby, David L. Kohlstedt and Lev Tarasov
Annals of Glaciology 30 163 (2000)
https://doi.org/10.3189/172756400781820859

Preferred crystallographic orientation in the ice I ← II transformation and the flow of ice II

K. Bennett, H. R. Wenk, W. B. Durham, L. A. Stern and S. H. Kirby
Philosophical Magazine A 76 (2) 413 (1997)
https://doi.org/10.1080/01418619708209983