La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
T. Christensen
J. Phys. Colloques, 46 C8 (1985) C8-635-C8-637
Citations de cet article :
63 articles
Nonlinear susceptibilities and higher-order responses related to physical aging: Wiener–Volterra approach and extended Tool–Narayanaswamy–Moynihan models
Kevin Moch, Catalin Gainaru and Roland Böhmer The Journal of Chemical Physics 161 (1) (2024) https://doi.org/10.1063/5.0207122
Some aspects of the glass transition of polyvinylpyrrolidone depending on the molecular mass
Semen Lapuk, Marina Ponomareva, Marat Ziganshin, et al. Physical Chemistry Chemical Physics 25 (15) 10706 (2023) https://doi.org/10.1039/D2CP05972J
Determination of Cooperativity Length in a Glass-Forming Polymer
Yeong Zen Chua, Reiner Zorn, Jürn W. P. Schmelzer, et al. ACS Physical Chemistry Au 3 (2) 172 (2023) https://doi.org/10.1021/acsphyschemau.2c00057
Cyclic Olefin Copolymers (COC)—Excellent Glass Formers with Low Dynamic Fragility
Rui Zhang, Vadlamudi Madhavi, Timothy D. Shaffer, René Androsch and Christoph Schick Macromolecular Chemistry and Physics 223 (15) (2022) https://doi.org/10.1002/macp.202200065
The Scaling of Relaxation Processes
T. V. Tropin, J. W. P. Schmelzer, G. Schulz and C. Schick Advances in Dielectrics, The Scaling of Relaxation Processes 307 (2018) https://doi.org/10.1007/978-3-319-72706-6_10
A 3D finite strain viscoelastic constitutive model for thermally induced shape memory polymers based on energy decomposition
Xiaobin Su and Xiongqi Peng International Journal of Plasticity 110 166 (2018) https://doi.org/10.1016/j.ijplas.2018.07.002
Nonlinear Dielectric Spectroscopy
Ralph V. Chamberlin, Roland Böhmer and Ranko Richert Advances in Dielectrics, Nonlinear Dielectric Spectroscopy 127 (2018) https://doi.org/10.1007/978-3-319-77574-6_5
Non-equilibrium Statistical Mechanics Based on the Free Energy Landscape and Its Application to Glassy Systems
Takashi Odagaki Journal of the Physical Society of Japan 86 (8) 082001 (2017) https://doi.org/10.7566/JPSJ.86.082001
Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids
Bo Jakobsen, Alejandro Sanz, Kristine Niss, et al. AIP Advances 6 (5) (2016) https://doi.org/10.1063/1.4952404
Dielectric Properties of Ionic Liquids
Evgeni Shoifet, Sergey P. Verevkin and Christoph Schick Advances in Dielectrics, Dielectric Properties of Ionic Liquids 213 (2016) https://doi.org/10.1007/978-3-319-32489-0_9
Reference Module in Materials Science and Materials Engineering
C. Schick Reference Module in Materials Science and Materials Engineering (2016) https://doi.org/10.1016/B978-0-12-803581-8.01340-0
Temperature modulated differential scanning calorimetry – extension to high and low frequencies
Evgeni Shoifet, Gunnar Schulz and Christoph Schick Thermochimica Acta 603 227 (2015) https://doi.org/10.1016/j.tca.2014.10.010
Communication: High pressure specific heat spectroscopy reveals simple relaxation behavior of glass forming molecular liquid
Lisa Anita Roed, Kristine Niss and Bo Jakobsen The Journal of Chemical Physics 143 (22) (2015) https://doi.org/10.1063/1.4936867
Highly sensitive pseudo-differential ac-nanocalorimeter for the study of the glass transition
Mohcine Laarraj, Rahma Adhiri, Said Ouaskit, et al. Review of Scientific Instruments 86 (11) (2015) https://doi.org/10.1063/1.4935491
Dynamics in Geometrical Confinement
Christoph Schick Advances in Dielectrics, Dynamics in Geometrical Confinement 307 (2014) https://doi.org/10.1007/978-3-319-06100-9_12
High frequency alternating current chip nano calorimeter with laser heating
E. Shoifet, Y. Z. Chua, H. Huth and C. Schick Review of Scientific Instruments 84 (7) (2013) https://doi.org/10.1063/1.4812349
Polymer Science: A Comprehensive Reference
C. Schick Polymer Science: A Comprehensive Reference 793 (2012) https://doi.org/10.1016/B978-0-444-53349-4.00056-X
Relaxation dynamics of glass transition in PMMA + SWCNT composites by temperature-modulated DSC
N R Pradhan and G S Iannacchione Journal of Physics D: Applied Physics 43 (10) 105401 (2010) https://doi.org/10.1088/0022-3727/43/10/105401
Glass transition under confinement-what can be learned from calorimetry
C. Schick The European Physical Journal Special Topics 189 (1) 3 (2010) https://doi.org/10.1140/epjst/e2010-01307-y
Theory and simulation of the dynamic heat capacity of the east Ising model
Jonathan R. Brown, John D. McCoy and Brian Borchers The Journal of Chemical Physics 133 (6) (2010) https://doi.org/10.1063/1.3469767
Frequency-dependent specific heat from thermal effusion in spherical geometry
Bo Jakobsen, Niels Boye Olsen and Tage Christensen Physical Review E 81 (6) (2010) https://doi.org/10.1103/PhysRevE.81.061505
Differential scanning calorimetry (DSC) of semicrystalline polymers
C. Schick Analytical and Bioanalytical Chemistry 395 (6) 1589 (2009) https://doi.org/10.1007/s00216-009-3169-y
Infrared Spectroscopic and X-ray Studies of the 4-Propyl-4′-isothiocyanatobiphenyl (3TCB)
Małgorzata Jasiurkowska, Jan Ściesiński, Joanna Czub, et al. The Journal of Physical Chemistry B 113 (21) 7435 (2009) https://doi.org/10.1021/jp901339c
Nonlinear energy response of glass forming materials
Fumitaka Tagawa and Takashi Odagaki Journal of Physics: Condensed Matter 20 (3) 035105 (2008) https://doi.org/10.1088/0953-8984/20/03/035105
Configurational specific heat of molecular liquids by modulated calorimetry
E. Tombari, C. Ferrari and G. P. Johari The Journal of Chemical Physics 129 (5) 054501 (2008) https://doi.org/10.1063/1.2961024
Solution of the spherically symmetric linear thermoviscoelastic problem in the inertia-free limit
Tage Christensen and Jeppe C. Dyre Physical Review E 78 (2) (2008) https://doi.org/10.1103/PhysRevE.78.021501
Relaxation of caloric curves on complex potential energy surfaces
F. Calvo and D. J. Wales The Journal of Chemical Physics 128 (15) (2008) https://doi.org/10.1063/1.2850322
Conventional methods fail to measurecp(ω)of glass-forming liquids
Tage Christensen, Niels Boye Olsen and Jeppe C. Dyre Physical Review E 75 (4) (2007) https://doi.org/10.1103/PhysRevE.75.041502
Differential AC-chip calorimeter for glass transition measurements in ultra thin polymeric films
H. Huth, A. A. Minakov, A. Serghei, F. Kremer and C. Schick The European Physical Journal Special Topics 141 (1) 153 (2007) https://doi.org/10.1140/epjst/e2007-00033-y
Colloquium: The glass transition and elastic models of glass-forming liquids
Jeppe C. Dyre Reviews of Modern Physics 78 (3) 953 (2006) https://doi.org/10.1103/RevModPhys.78.953
Nonlinear Energy Response in Free Energy Landscape Picture
Fumitaka Tagawa and Takashi Odagaki Journal of the Physical Society of Japan 75 (12) 124003 (2006) https://doi.org/10.1143/JPSJ.75.124003
Solidity of viscous liquids. III. α relaxation
Jeppe Dyre Physical Review E 72 (1) 011501 (2005) https://doi.org/10.1103/PhysRevE.72.011501
Frequency dependent heat capacity within a kinetic model of glassy dynamics
Dwaipayan Chakrabarti and Biman Bagchi The Journal of Chemical Physics 122 (1) 014501 (2005) https://doi.org/10.1063/1.1829251
Frequency dependence and equilibration of the specific heat of glass-forming liquids
Clare C. Yu and Hervé M. Carruzzo Physical Review E 69 (5) (2004) https://doi.org/10.1103/PhysRevE.69.051201
Nonmonotonic temperature dependence of heat capacity through the glass transition within a kinetic model
Dwaipayan Chakrabarti and Biman Bagchi The Journal of Chemical Physics 120 (24) 11678 (2004) https://doi.org/10.1063/1.1752886
Approach of single-molecule magnets to thermal equilibrium
F. Luis, F. Mettes, M. Evangelisti, A. Morello and L.J. de Jongh Journal of Physics and Chemistry of Solids 65 (4) 763 (2004) https://doi.org/10.1016/j.jpcs.2003.11.013
Differential 3ω calorimeter
D.H Jung, I.K Moon, Y.H Jeong and S.H Lee Thermochimica Acta 403 (1) 83 (2003) https://doi.org/10.1016/S0040-6031(03)00082-0
Relaxation phenomenon measured as dynamic specific heat in the first-order phase transition of a molecular crystal
H. Honda, S. Tasaki, A. Chiba and H. Ogura Physical Review B 65 (10) (2002) https://doi.org/10.1103/PhysRevB.65.104112
Frequency-dependent specific heat of viscous silica
Peter Scheidler, Walter Kob, Arnulf Latz, Jürgen Horbach and Kurt Binder Physical Review B 63 (10) (2001) https://doi.org/10.1103/PhysRevB.63.104204
Development of the front-detection photopyroelectric (FPPE) configuration for thermophysical study of glass-forming liquids
M. Chirtoc, E.H. Bentefour, C. Glorieux and J. Thoen Thermochimica Acta 377 (1-2) 105 (2001) https://doi.org/10.1016/S0040-6031(01)00545-7
Relaxation in glassforming liquids and amorphous solids
C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan and S. W. Martin Journal of Applied Physics 88 (6) 3113 (2000) https://doi.org/10.1063/1.1286035
Linear response theory for thermodynamic properties
Johannes K. Nielsen Physical Review E 60 (1) 471 (1999) https://doi.org/10.1103/PhysRevE.60.471
Slow structural relaxations of glass-forming Maltitol by modulated DSC calorimetry
O. Bustin and M. Descamps The Journal of Chemical Physics 110 (22) 10982 (1999) https://doi.org/10.1063/1.478041
Thermoviscoelasticity of glass-forming liquids
Tage Christensen and Niels Boye Olsen Journal of Non-Crystalline Solids 235-237 296 (1998) https://doi.org/10.1016/S0022-3093(98)00591-2
Time Dependent Specific Heat of a Magnetic Quantum Tunneling System
Julio F. Fernández, Fernando Luis and Juan Bartolomé Physical Review Letters 80 (25) 5659 (1998) https://doi.org/10.1103/PhysRevLett.80.5659
Frequency dependent thermodynamic response functions from computer simulations
J.K. Nielsen Journal of Non-Crystalline Solids 235-237 346 (1998) https://doi.org/10.1016/S0022-3093(98)00566-3
Specific heat spectroscopy: Origins, status and applications of the 3ω method
Norman O. Birge, Paul K. Dixon and Narayanan Menon Thermochimica Acta 304-305 51 (1997) https://doi.org/10.1016/S0040-6031(97)00201-3
Fluctuation-dissipation theorem for frequency-dependent specific heat
Johannes K. Nielsen and Jeppe C. Dyre Physical Review B 54 (22) 15754 (1996) https://doi.org/10.1103/PhysRevB.54.15754
Structural relaxation in viscous glycerol: Coherent neutron scattering
J. Wuttke, W. Petry and S. Pouget The Journal of Chemical Physics 105 (12) 5177 (1996) https://doi.org/10.1063/1.472336
Universal time dependence of the mean-square displacement in extremely rugged energy landscapes with equal minima
Jeppe C. Dyre and Jacob M. Jacobsen Physical Review E 52 (3) 2429 (1995) https://doi.org/10.1103/PhysRevE.52.2429
Energy master equation: A low-temperature approximation to Bässler’s random-walk model
Jeppe C. Dyre Physical Review B 51 (18) 12276 (1995) https://doi.org/10.1103/PhysRevB.51.12276
Slow relaxation process in the main transition of phosphatidylcholines studied with heat capacity spectroscopy. I. Multilamellar vesicles
Haruhiko Yao, Hiromi Nagano, Yasuho Kawase and Kenji Ema Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 1212 (1) 73 (1994) https://doi.org/10.1016/0005-2760(94)90191-0
Determination of the frequency-dependent bulk modulus of glycerol using a piezoelectric spherical shell
T. Christensen and N. B. Olsen Physical Review B 49 (21) 15396 (1994) https://doi.org/10.1103/PhysRevB.49.15396
Disorder Effects on Relaxational Processes
Roland Böhmer and C. Austen Angell Disorder Effects on Relaxational Processes 11 (1994) https://doi.org/10.1007/978-3-642-78576-4_2
Phase Transitions and Relaxation in Systems with Competing Energy Scales
Sidney R. Nagel Phase Transitions and Relaxation in Systems with Competing Energy Scales 259 (1993) https://doi.org/10.1007/978-94-011-1908-5_12
Specific-heat relaxation in glycerol
M. Massalska-Arodź Physical Review B 43 (16) 13676 (1991) https://doi.org/10.1103/PhysRevB.43.13676
Scaling in the relaxation of supercooled liquids
Paul K. Dixon, Lei Wu, Sidney R. Nagel, Bruce D. Williams and John P. Carini Physical Review Letters 65 (9) 1108 (1990) https://doi.org/10.1103/PhysRevLett.65.1108
Specific-heat spectroscopy and dielectric susceptibility measurements of salol at the glass transition
Paul K. Dixon Physical Review B 42 (13) 8179 (1990) https://doi.org/10.1103/PhysRevB.42.8179
Heat conduction and relaxation in liquids of high viscosity
Josef Jäckle Physica A: Statistical Mechanics and its Applications 162 (3) 377 (1990) https://doi.org/10.1016/0378-4371(90)90424-Q
Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit
C.A. Angell Journal of Non-Crystalline Solids 102 (1-3) 205 (1988) https://doi.org/10.1016/0022-3093(88)90133-0
Dynamic specific heat of spin glasses: Studies of a spin cluster
Marek Cieplak and Grzegorz Szamel Physical Review B 37 (4) 1790 (1988) https://doi.org/10.1103/PhysRevB.37.1790
Wide‐frequency specific heat spectrometer
Norman O. Birge and Sidney R. Nagel Review of Scientific Instruments 58 (8) 1464 (1987) https://doi.org/10.1063/1.1139434
Specific-heat spectroscopy of glycerol and propylene glycol near the glass transition
Norman O. Birge Physical Review B 34 (3) 1631 (1986) https://doi.org/10.1103/PhysRevB.34.1631