Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Nonlinear susceptibilities and higher-order responses related to physical aging: Wiener–Volterra approach and extended Tool–Narayanaswamy–Moynihan models

Kevin Moch, Catalin Gainaru and Roland Böhmer
The Journal of Chemical Physics 161 (1) (2024)
https://doi.org/10.1063/5.0207122

Some aspects of the glass transition of polyvinylpyrrolidone depending on the molecular mass

Semen Lapuk, Marina Ponomareva, Marat Ziganshin, et al.
Physical Chemistry Chemical Physics 25 (15) 10706 (2023)
https://doi.org/10.1039/D2CP05972J

Cyclic Olefin Copolymers (COC)—Excellent Glass Formers with Low Dynamic Fragility

Rui Zhang, Vadlamudi Madhavi, Timothy D. Shaffer, René Androsch and Christoph Schick
Macromolecular Chemistry and Physics 223 (15) (2022)
https://doi.org/10.1002/macp.202200065

A 3D finite strain viscoelastic constitutive model for thermally induced shape memory polymers based on energy decomposition

Xiaobin Su and Xiongqi Peng
International Journal of Plasticity 110 166 (2018)
https://doi.org/10.1016/j.ijplas.2018.07.002

Non-equilibrium Statistical Mechanics Based on the Free Energy Landscape and Its Application to Glassy Systems

Takashi Odagaki
Journal of the Physical Society of Japan 86 (8) 082001 (2017)
https://doi.org/10.7566/JPSJ.86.082001

Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

Bo Jakobsen, Alejandro Sanz, Kristine Niss, et al.
AIP Advances 6 (5) (2016)
https://doi.org/10.1063/1.4952404

Dielectric Properties of Ionic Liquids

Evgeni Shoifet, Sergey P. Verevkin and Christoph Schick
Advances in Dielectrics, Dielectric Properties of Ionic Liquids 213 (2016)
https://doi.org/10.1007/978-3-319-32489-0_9

Temperature modulated differential scanning calorimetry – extension to high and low frequencies

Evgeni Shoifet, Gunnar Schulz and Christoph Schick
Thermochimica Acta 603 227 (2015)
https://doi.org/10.1016/j.tca.2014.10.010

Communication: High pressure specific heat spectroscopy reveals simple relaxation behavior of glass forming molecular liquid

Lisa Anita Roed, Kristine Niss and Bo Jakobsen
The Journal of Chemical Physics 143 (22) (2015)
https://doi.org/10.1063/1.4936867

Highly sensitive pseudo-differential ac-nanocalorimeter for the study of the glass transition

Mohcine Laarraj, Rahma Adhiri, Said Ouaskit, et al.
Review of Scientific Instruments 86 (11) (2015)
https://doi.org/10.1063/1.4935491

High frequency alternating current chip nano calorimeter with laser heating

E. Shoifet, Y. Z. Chua, H. Huth and C. Schick
Review of Scientific Instruments 84 (7) (2013)
https://doi.org/10.1063/1.4812349

Relaxation dynamics of glass transition in PMMA + SWCNT composites by temperature-modulated DSC

N R Pradhan and G S Iannacchione
Journal of Physics D: Applied Physics 43 (10) 105401 (2010)
https://doi.org/10.1088/0022-3727/43/10/105401

Theory and simulation of the dynamic heat capacity of the east Ising model

Jonathan R. Brown, John D. McCoy and Brian Borchers
The Journal of Chemical Physics 133 (6) (2010)
https://doi.org/10.1063/1.3469767

Infrared Spectroscopic and X-ray Studies of the 4-Propyl-4′-isothiocyanatobiphenyl (3TCB)

Małgorzata Jasiurkowska, Jan Ściesiński, Joanna Czub, et al.
The Journal of Physical Chemistry B 113 (21) 7435 (2009)
https://doi.org/10.1021/jp901339c

Configurational specific heat of molecular liquids by modulated calorimetry

E. Tombari, C. Ferrari and G. P. Johari
The Journal of Chemical Physics 129 (5) 054501 (2008)
https://doi.org/10.1063/1.2961024

Relaxation of caloric curves on complex potential energy surfaces

F. Calvo and D. J. Wales
The Journal of Chemical Physics 128 (15) (2008)
https://doi.org/10.1063/1.2850322

Differential AC-chip calorimeter for glass transition measurements in ultra thin polymeric films

H. Huth, A. A. Minakov, A. Serghei, F. Kremer and C. Schick
The European Physical Journal Special Topics 141 (1) 153 (2007)
https://doi.org/10.1140/epjst/e2007-00033-y

Nonlinear Energy Response in Free Energy Landscape Picture

Fumitaka Tagawa and Takashi Odagaki
Journal of the Physical Society of Japan 75 (12) 124003 (2006)
https://doi.org/10.1143/JPSJ.75.124003

Frequency dependent heat capacity within a kinetic model of glassy dynamics

Dwaipayan Chakrabarti and Biman Bagchi
The Journal of Chemical Physics 122 (1) 014501 (2005)
https://doi.org/10.1063/1.1829251

Nonmonotonic temperature dependence of heat capacity through the glass transition within a kinetic model

Dwaipayan Chakrabarti and Biman Bagchi
The Journal of Chemical Physics 120 (24) 11678 (2004)
https://doi.org/10.1063/1.1752886

Approach of single-molecule magnets to thermal equilibrium

F. Luis, F. Mettes, M. Evangelisti, A. Morello and L.J. de Jongh
Journal of Physics and Chemistry of Solids 65 (4) 763 (2004)
https://doi.org/10.1016/j.jpcs.2003.11.013

Relaxation phenomenon measured as dynamic specific heat in the first-order phase transition of a molecular crystal

H. Honda, S. Tasaki, A. Chiba and H. Ogura
Physical Review B 65 (10) (2002)
https://doi.org/10.1103/PhysRevB.65.104112

Development of the front-detection photopyroelectric (FPPE) configuration for thermophysical study of glass-forming liquids

M. Chirtoc, E.H. Bentefour, C. Glorieux and J. Thoen
Thermochimica Acta 377 (1-2) 105 (2001)
https://doi.org/10.1016/S0040-6031(01)00545-7

Relaxation in glassforming liquids and amorphous solids

C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan and S. W. Martin
Journal of Applied Physics 88 (6) 3113 (2000)
https://doi.org/10.1063/1.1286035

Slow structural relaxations of glass-forming Maltitol by modulated DSC calorimetry

O. Bustin and M. Descamps
The Journal of Chemical Physics 110 (22) 10982 (1999)
https://doi.org/10.1063/1.478041

Structural relaxation in viscous glycerol: Coherent neutron scattering

J. Wuttke, W. Petry and S. Pouget
The Journal of Chemical Physics 105 (12) 5177 (1996)
https://doi.org/10.1063/1.472336

Universal time dependence of the mean-square displacement in extremely rugged energy landscapes with equal minima

Jeppe C. Dyre and Jacob M. Jacobsen
Physical Review E 52 (3) 2429 (1995)
https://doi.org/10.1103/PhysRevE.52.2429

Slow relaxation process in the main transition of phosphatidylcholines studied with heat capacity spectroscopy. I. Multilamellar vesicles

Haruhiko Yao, Hiromi Nagano, Yasuho Kawase and Kenji Ema
Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 1212 (1) 73 (1994)
https://doi.org/10.1016/0005-2760(94)90191-0

Determination of the frequency-dependent bulk modulus of glycerol using a piezoelectric spherical shell

T. Christensen and N. B. Olsen
Physical Review B 49 (21) 15396 (1994)
https://doi.org/10.1103/PhysRevB.49.15396

Wide‐frequency specific heat spectrometer

Norman O. Birge and Sidney R. Nagel
Review of Scientific Instruments 58 (8) 1464 (1987)
https://doi.org/10.1063/1.1139434