Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Elasticity of lyotropic nematic liquid crystals: a review of experiments, theory and simulation

Styliani Varytimiadou, Davide Revignas, Frank Giesselmann and Alberta Ferrarini
Liquid Crystals Reviews 12 (1) 57 (2024)
https://doi.org/10.1080/21680396.2024.2411452

Account for the Inertial Term in the Navier–Stokes Equation in the Model of Magnetohydrodynamic Domains for Nematics with Negative Anisotropy of Diamagnetic Susceptibility

A. V. Golovanov
Optics and Spectroscopy 130 (6) 361 (2022)
https://doi.org/10.1134/S0030400X22070025

Multifunctionality by dispersion of magnetic nanoparticles in anisotropic matrices

Alexey Eremin, Hajnalka Nádasi and Ralf Stannarius
Physical Sciences Reviews 7 (9) 1033 (2022)
https://doi.org/10.1515/psr-2019-0111

Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials

Blaise L. Tardy, Bruno D. Mattos, Caio G. Otoni, et al.
Chemical Reviews 121 (22) 14088 (2021)
https://doi.org/10.1021/acs.chemrev.0c01333

On the Problem of Transient Hydrodynamic Instability of Nematics in the Magnetic Field. II: Linear Analysis of the Stability of Certain Models of Magnetohydrodynamic Domains

A. V. Golovanov
Crystallography Reports 65 (1) 114 (2020)
https://doi.org/10.1134/S1063774520010083

ВЛИЯНИЕ МАГНИТНОГО ПОЛЯ НА ФАЗОВЫЕ ПЕРЕХОДЫ РАСТВОРОВ И РАСПЛАВОВ ГИБКОЦЕПНЫХ ПОЛИМЕРОВ, "Высокомолекулярные соединения. Серия А"

С.А. Вшивков, И. В. Жернов, А. Л. Надольский and А. С. Мизёв
Высокомолекулярные соединения А (4) 299 (2017)
https://doi.org/10.7868/S2308112017040149

Continuous Paranematic Ordering of Rigid and Semiflexible Amyloid-Fe3O4 Hybrid Fibrils in an External Magnetic Field

Jianguo Zhao, Sreenath Bolisetty, Stéphane Isabettini, et al.
Biomacromolecules 17 (8) 2555 (2016)
https://doi.org/10.1021/acs.biomac.6b00539

Deformable homeotropic nematic droplets in a magnetic field

Ronald H. J. Otten and Paul van der Schoot
The Journal of Chemical Physics 137 (15) (2012)
https://doi.org/10.1063/1.4756946

Uniaxial and biaxial liquid crystal phases in colloidal dispersions of board-like particles

E. van den Pol, D.M.E. Thies–Weesie, A.V. Petukhov, D.V. Byelov and G.J. Vroege
Liquid Crystals 37 (6-7) 641 (2010)
https://doi.org/10.1080/02678291003798164

Capillary Rise of an Isotropic−Nematic Fluid Interface: Surface Tension and Anchoring versus Elasticity

Ronald H. J. Otten and Paul van der Schoot
Langmuir 25 (4) 2427 (2009)
https://doi.org/10.1021/la802967p

Viscous and elastic properties of the nematic in the tetrapalladium organyl-pentadecane system

A. V. Golovanov, A. N. Gaidadin and G. V. Ryabchuk
Crystallography Reports 53 (4) 695 (2008)
https://doi.org/10.1134/S1063774508040238

Orientation dependent Stokes drag in a colloidal liquid crystal

A. A. Verhoeff, J. van Rijssel, V. W. A. de Villeneuve and H. N. W. Lekkerkerker
Soft Matter 4 (8) 1602 (2008)
https://doi.org/10.1039/b804236e

The complex phase behaviour of suspensions of goethite (α-FeOOH) nanorods in a magnetic field

Bruno J. Lemaire, Patrick Davidson, Jacques Ferré, et al.
Faraday Discuss. 128 271 (2005)
https://doi.org/10.1039/B403074E

The nature of prolate shape of tactoids in lyotropic inorganic liquid crystals

A. V. Kaznacheev, M. M. Bogdanov and S. A. Taraskin
Journal of Experimental and Theoretical Physics 95 (1) 57 (2002)
https://doi.org/10.1134/1.1499901

Effect of magnetic field on lyotropic nematic in the vanadium pentoxide (V2O5)-water system

É. V. Generalova, A. V. Kaznacheev and A. S. Sonin
Crystallography Reports 46 (1) 111 (2001)
https://doi.org/10.1134/1.1343137

Compact Permanent Magnetic Circuit with Periodic Magnetic Field Designed for Studies of Liquid Crystals

Mitsuhiro Hirai, Shingo Mitsuya, Hiroki Iwase, et al.
Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 367 (1) 641 (2001)
https://doi.org/10.1080/10587250108028685

Comment on “Corresponding states of periodic structures in nematic liquid crystals”

Maren Grigutsch and Ralf Stannarius
Physical Review E 60 (1) 1092 (1999)
https://doi.org/10.1103/PhysRevE.60.1092

Dynamics and phase behavior of a supermacromolecular suspension under a magnetic field studied by time-resolved x-ray scattering

M. Hirai, S. Arai, T. Takizawa, Y. Yabuki and Y. Sano
Physical Review B 55 (6) 3490 (1997)
https://doi.org/10.1103/PhysRevB.55.3490

On the influence of the Frank elasticity on the magnetic reorientation of nematic polymers

J. P. Casquilho, L. N. Gon[ctilde]alves and A. F. Martins
Liquid Crystals 21 (5) 651 (1996)
https://doi.org/10.1080/02678299608032877

Time-transient process of magnetically induced growth of nematic domains in a biological macromolecular liquid crystal

M. Hirai, T. Takizawa, S. Yabuki, et al.
Physical Review E 51 (2) 1263 (1995)
https://doi.org/10.1103/PhysRevE.51.1263

Transient structures in the twist Fréedericksz transition of low-molecular-weight nematic liquid crystals

M. Grigutsch, N. Klöpper, H. Schmiedel and R. Stannarius
Physical Review E 49 (6) 5452 (1994)
https://doi.org/10.1103/PhysRevE.49.5452

Angular correlations and the isotropic-nematic phase transition in suspensions of tobacco mosaic virus

Seth Fraden, Georg Maret and D. Caspar
Physical Review E 48 (4) 2816 (1993)
https://doi.org/10.1103/PhysRevE.48.2816

Nonequilibrium patterns in the electric-field-induced splay Fréedericksz transition

B. L. Winkler, H. Richter, I. Rehberg, et al.
Physical Review A 43 (4) 1940 (1991)
https://doi.org/10.1103/PhysRevA.43.1940

Reorientation instabilities and viscoelastic measurements in a main chain thermotropic nematic polymer Optical and NMR studies

P. Esnault, J. P. Casquilho, F. Volino, A. F. Martins and A. Blumstein
Liquid Crystals 7 (5) 607 (1990)
https://doi.org/10.1080/02678299008036746

Field-induced nonequilibrium periodic structures in nematic liquid crystals: Nonlinear study of the twist Frederiks transition

George Srajer, Seth Fraden and Robert B. Meyer
Physical Review A 39 (9) 4828 (1989)
https://doi.org/10.1103/PhysRevA.39.4828

Isotropic-nematic phase transition and angular correlations in isotropic suspensions of tobacco mosaic virus

Seth Fraden, Georg Maret, D. L. D. Caspar and Robert B. Meyer
Physical Review Letters 63 (19) 2068 (1989)
https://doi.org/10.1103/PhysRevLett.63.2068

The Leslie coefficients for a polymer nematic liquid crystal

Sin‐Doo Lee
The Journal of Chemical Physics 88 (8) 5196 (1988)
https://doi.org/10.1063/1.454675

Orientational Distribution Function in Nematic Tobacco-Mosaic-Virus Liquid Crystals Measured by X-Ray Diffraction

R. Oldenbourg, X. Wen, R. B. Meyer and D. L. D. Caspar
Physical Review Letters 61 (16) 1851 (1988)
https://doi.org/10.1103/PhysRevLett.61.1851

Elastic moduli of a nematic liquid–crystalline solution of polyelectrolytes

Gert Jan Vroege and Theo Odijk
The Journal of Chemical Physics 87 (7) 4223 (1987)
https://doi.org/10.1063/1.452876

Small permanent magnet for fields up to 2.6 T

R. Oldenbourg and W. C. Phillips
Review of Scientific Instruments 57 (9) 2362 (1986)
https://doi.org/10.1063/1.1138680

Nonequilibrium Periodic Structures Induced by Rotating and Static Fields in a Lyotropic Nematic Liquid Crystal

Michael R. Kuzma
Physical Review Letters 57 (3) 349 (1986)
https://doi.org/10.1103/PhysRevLett.57.349

Computations of the phase equilibrium, elastic constants, and viscosities of a hard‐rod nematic liquid crystal

Sin‐Doo Lee and Robert B. Meyer
The Journal of Chemical Physics 84 (6) 3443 (1986)
https://doi.org/10.1063/1.450228

Freeze-Fracture Imaging of Ordered Phases of Tobacco Mosaic Virus in Water

Joseph A. N. Zasadzinski, Michael J. Sammon, Robert B. Meyer, M. Cahoon and D. L. D. Caspar
Molecular Crystals and Liquid Crystals 138 (1) 211 (1986)
https://doi.org/10.1080/00268948608071761