Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Understanding thermo-mechanical processing pathways to simultaneously increase strength and damping in steels

J. Rackwitz, G.B. Olson and C.C. Tasan
Acta Materialia 289 120864 (2025)
https://doi.org/10.1016/j.actamat.2025.120864

Optimizing Transformation-Induced Plasticity to Resist Microvoid Softening

Brandon D. Snow, G. B. Olson and D. M. Parks
Metallurgical and Materials Transactions A 55 (12) 4852 (2024)
https://doi.org/10.1007/s11661-024-07608-0

Effect of Rolling Temperature on Martensitic Transformation and Strain Hardening of Fe–21.2Mn–0.68C Steel

E. Dryzek, M. Wróbel, Ł. Rogal and M. Sarnek
Metallurgical and Materials Transactions A 55 (3) 839 (2024)
https://doi.org/10.1007/s11661-023-07289-1

A large deformation constitutive model for plastic strain-induced phase transformation of stainless steels at cryogenic temperatures

M. Homayounfard and M. Ganjiani
International Journal of Plasticity 156 103344 (2022)
https://doi.org/10.1016/j.ijplas.2022.103344

Damage development during the strain induced phase transformation of austenitic stainless steels at low temperatures

Milad Homayounfard, Mehdi Ganjiani and Farnaz Sasani
Modelling and Simulation in Materials Science and Engineering 29 (4) 045004 (2021)
https://doi.org/10.1088/1361-651X/abea67

Future Trends on Displacive Stress and Strain Induced Transformations in Steels

Adriana Eres-Castellanos, Carlos Garcia-Mateo and Francisca G. Caballero
Metals 11 (2) 299 (2021)
https://doi.org/10.3390/met11020299

A thermo-mechanically coupled finite strain model for phase-transitioning austenitic steels in ambient to cryogenic temperature range

Mrityunjay Kothari, Sijun Niu and Vikas Srivastava
Journal of the Mechanics and Physics of Solids 133 103729 (2019)
https://doi.org/10.1016/j.jmps.2019.103729

Strain rate jump tests on an austenitic stainless steel with a modified tensile Hopkinson split bar

Naiara I. Vazquez Fernandez, Matti Isakov, Mikko Hokka, et al.
EPJ Web of Conferences 183 02026 (2018)
https://doi.org/10.1051/epjconf/201818302026

A model for the strain rate dependent plasticity of a metastable austenitic stainless steel

M. Isakov, M. May, S. Hiermaier and V.-T. Kuokkala
Materials & Design 106 258 (2016)
https://doi.org/10.1016/j.matdes.2016.05.067

Effect of Strain Rate on the Martensitic Transformation During Plastic Deformation of an Austenitic Stainless Steel

Matti Isakov, Stefan Hiermaier and Veli-Tapani Kuokkala
Metallurgical and Materials Transactions A 46 (6) 2352 (2015)
https://doi.org/10.1007/s11661-015-2862-z

Micromechanics based constitutive modeling of martensitic transformation in metastable materials subjected to torsion at cryogenic temperatures

R. Ortwein, B. Skoczeń and J.Ph. Tock
International Journal of Plasticity 59 152 (2014)
https://doi.org/10.1016/j.ijplas.2014.03.006

Constitutive model of discontinuous plastic flow at cryogenic temperatures

B. Skoczeń, J. Bielski, S. Sgobba and D. Marcinek
International Journal of Plasticity 26 (12) 1659 (2010)
https://doi.org/10.1016/j.ijplas.2010.02.003

Modeling of Plastic Strain-Induced Martensitic Transformation for Cryogenic Applications

C. Garion and B. Skoczen
Journal of Applied Mechanics 69 (6) 755 (2002)
https://doi.org/10.1115/1.1509485

Effect of Deformation-Induced Martensitic Transformation on the Plastic Behavior of Metastable Austenitic Stainless Steel

Tetsu Narutani
Materials Transactions, JIM 30 (1) 33 (1989)
https://doi.org/10.2320/matertrans1989.30.33