Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Functional Fatigue of NiTi Shape Memory Alloy: Effect of Loading Frequency and Source of Residual Strains

R. Sidharth, A. S. K. Mohammed and H. Sehitoglu
Shape Memory and Superelasticity 8 (4) 394 (2022)
https://doi.org/10.1007/s40830-022-00397-8

A multi-physics, multi-scale and finite strain crystal plasticity-based model for pseudoelastic NiTi shape memory alloy

Xiaofei Ju, Ziad Moumni, Yahui Zhang, et al.
International Journal of Plasticity 148 103146 (2022)
https://doi.org/10.1016/j.ijplas.2021.103146

Effect of the elastic hysteresis term formulation and response to non-harmonic periodic excitations of a non-linear SDOF dynamical model with weak frequency-dependency in the time domain

Christos Spitas, Mahmoud S Dwaikat and Vasileios Spitas
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 235 (20) 4637 (2021)
https://doi.org/10.1177/09544062211018252

Unraveling Frequency Effects in Shape Memory Alloys: NiTi and FeMnAlNi

R. Sidharth, A. S. K. Mohammed, W. Abuzaid and H. Sehitoglu
Shape Memory and Superelasticity 7 (2) 235 (2021)
https://doi.org/10.1007/s40830-021-00335-0

Characterization of mechanical properties of pseudoelastic shape memory alloys under harmonic excitation

J Böttcher, M Jahn and S Tatzko
Materials Research Express 4 (12) 126505 (2017)
https://doi.org/10.1088/2053-1591/aa9bac

A comprehensive energy approach to predict fatigue life in CuAlBe shape memory alloy

S Sameallah, V Legrand, L Saint-Sulpice, M Kadkhodaei and S Arbab Chirani
Smart Materials and Structures 24 (2) 025004 (2015)
https://doi.org/10.1088/0964-1726/24/2/025004

Direct numerical determination of stabilized dissipated energy of shape memory alloys under cyclic tensile loadings

Shima Sameallah, Mahmoud Kadkhodaei, Vincent Legrand, Luc Saint-Sulpice and Shabnam Arbab Chirani
Journal of Intelligent Material Systems and Structures 26 (16) 2137 (2015)
https://doi.org/10.1177/1045389X14549869

A coupled kinetic Monte Carlo–finite element mesoscale model for thermoelastic martensitic phase transformations in shape memory alloys

Ying Chen and Christopher A. Schuh
Acta Materialia 83 431 (2015)
https://doi.org/10.1016/j.actamat.2014.10.011

Rate dependence of temperature fields and energy dissipations in non-static pseudoelasticity

Y. Yan, H. Yin, Q. P. Sun and Y. Huo
Continuum Mechanics and Thermodynamics 24 (4-6) 675 (2012)
https://doi.org/10.1007/s00161-012-0254-9

Kinetic effects in the mixed β to β3′+γ3′ martensitic transformation in a Cu–Al–Ni shape memory alloy

J. Rodríguez-Aseguinolaza, I. Ruiz-Larrea, M.L. Nó, A. López-Echarri and J. San Juan
Acta Materialia 58 (2) 692 (2010)
https://doi.org/10.1016/j.actamat.2009.09.047

Factors Controlling Superelastic Damping Capacity of SMAs

L. Heller, P. Šittner, J. Pilch and M. Landa
Journal of Materials Engineering and Performance 18 (5-6) 603 (2009)
https://doi.org/10.1007/s11665-009-9358-1

Preisach modeling of hysteresis for a pseudoelastic Cu‐Zn‐Al single crystal

Jordi Ortín
Journal of Applied Physics 71 (3) 1454 (1992)
https://doi.org/10.1063/1.351238