La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
J. B. Van Zytveld
J. Phys. Colloques, 41 C8 (1980) C8-503-C8-506
Citations de cet article :
21 articles
Electrical and thermal conductivity of fcc and hcp iron under conditions of the Earth's core from
ab initio
simulations
Uwe Kleinschmidt, Martin French, Gerd Steinle-Neumann and Ronald Redmer Physical Review B 107 (8) (2023) https://doi.org/10.1103/PhysRevB.107.085145
Measuring the Electrical Resistivity of Liquid Iron to 1.4 Mbar
Kenji Ohta, Sho Suehiro, Saori I. Kawaguchi, et al. Physical Review Letters 130 (26) (2023) https://doi.org/10.1103/PhysRevLett.130.266301
Light Metals 2023
Maja Vončina, Mitja Petrič, Sebastjan Kastelic, et al. The Minerals, Metals & Materials Series, Light Metals 2023 294 (2023) https://doi.org/10.1007/978-3-031-22532-1_40
Role of non-d valence electrons for the study of transport properties of some transition metals
K.G. Bhatia, P.R. Vyas and P.N. Gajjar Physica B: Condensed Matter 635 413837 (2022) https://doi.org/10.1016/j.physb.2022.413837
Phase diagrams of Fe–Si alloys at 3–5 GPa from electrical resistivity measurements
Meryem Berrada and Richard A. Secco Physics and Chemistry of Minerals 49 (11) (2022) https://doi.org/10.1007/s00269-022-01220-7
New measurement of melting and thermal conductivity of iron close to outer core conditions
Abhisek Basu, Matthew R. Field, Dougal G. McCulloch and Reinhard Boehler Geoscience Frontiers 11 (2) 565 (2020) https://doi.org/10.1016/j.gsf.2019.06.007
Paramagnetic-to-Diamagnetic Transition in Dense Liquid Iron and Its Influence on Electronic Transport Properties
Jean-Alexander Korell, Martin French, Gerd Steinle-Neumann and Ronald Redmer Physical Review Letters 122 (8) (2019) https://doi.org/10.1103/PhysRevLett.122.086601
Influence of static magnetic field intensity on the separation and migration of Fe-rich bulks in an immiscible (Fe–C)–Cu alloy
Mingjun Li and Takuya Tamura Philosophical Magazine 99 (18) 2221 (2019) https://doi.org/10.1080/14786435.2019.1616122
The effects of ferromagnetism and interstitial hydrogen on the equation of states of hcp and dhcp FeHx: Implications for the Earth's inner core age
Hitoshi Gomi, Yingwei Fei and Takashi Yoshino American Mineralogist 103 (8) 1271 (2018) https://doi.org/10.2138/am-2018-6295
Electrical resistivity of liquid Fe to 12 GPa: Implications for heat flow in cores of terrestrial bodies
Reynold E. Silber, Richard A. Secco, Wenjun Yong and Joshua A. H. Littleton Scientific Reports 8 (1) (2018) https://doi.org/10.1038/s41598-018-28921-w
Resistivity saturation in liquid iron–light-element alloys at conditions of planetary cores from first principles computations
Fabian Wagle, Gerd Steinle-Neumann and Nico de Koker Comptes Rendus. Géoscience 351 (2-3) 154 (2018) https://doi.org/10.1016/j.crte.2018.05.002
Electrical resistivity discontinuity of iron along the melting curve
Fabian Wagle and Gerd Steinle-Neumann Geophysical Journal International 213 (1) 237 (2018) https://doi.org/10.1093/gji/ggx526
Electrical Resistivity of Fe‐C Alloy at High Pressure: Effects of Carbon as a Light Element on the Thermal Conductivity of the Earth's Core
Chengwei Zhang, Jung‐Fu Lin, Ying Liu, et al. Journal of Geophysical Research: Solid Earth 123 (5) 3564 (2018) https://doi.org/10.1029/2017JB015260
Impurity Resistivity of fcc and hcp Fe-Based Alloys: Thermal Stratification at the Top of the Core of Super-Earths
Hitoshi Gomi and Takashi Yoshino Frontiers in Earth Science 6 (2018) https://doi.org/10.3389/feart.2018.00217
Saturation and negative temperature coefficient of electrical resistivity in liquid iron-sulfur alloys at high densities from first-principles calculations
Fabian Wagle, Gerd Steinle-Neumann and Nico de Koker Physical Review B 97 (9) (2018) https://doi.org/10.1103/PhysRevB.97.094307
Constant electrical resistivity of Ni along the melting boundary up to 9 GPa
Reynold E. Silber, Richard A. Secco and Wenjun Yong Journal of Geophysical Research: Solid Earth 122 (7) 5064 (2017) https://doi.org/10.1002/2017JB014259
Thermal conductivity and Seebeck coefficient of Fe and Fe-Si alloys: Implications for variable Lorenz number
Richard A. Secco Renewable Energy (2017) https://doi.org/10.1016/j.renene.2017.01.061
Thermal conductivity and Seebeck coefficient of Fe and Fe-Si alloys: Implications for variable Lorenz number
Richard A. Secco Physics of the Earth and Planetary Interiors 265 23 (2017) https://doi.org/10.1016/j.pepi.2017.01.005
Experimental determination of the electrical resistivity of iron at Earth’s core conditions
Kenji Ohta, Yasuhiro Kuwayama, Kei Hirose, Katsuya Shimizu and Yasuo Ohishi Nature 534 (7605) 95 (2016) https://doi.org/10.1038/nature17957
Real-space calculation of the electrical resistivity of liquid 3d transition metals using tight-binding linear muffin-tin orbitals
S. Bose, O. Jepsen and O. Andersen Physical Review B 48 (7) 4265 (1993) https://doi.org/10.1103/PhysRevB.48.4265
On the applicability of the nearly free electron model to resistivity calculations for liquid metals
J Gorecki and J Popielawski Journal of Physics F: Metal Physics 13 (10) 2107 (1983) https://doi.org/10.1088/0305-4608/13/10/020