Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Experimental Evidences on Magnetism-Covalent Bonding Interplay in Structural Properties of Solids and during Chemisorption

Chiara Biz, Jose Gracia and Mauro Fianchini
International Journal of Molecular Sciences 25 (3) 1793 (2024)
https://doi.org/10.3390/ijms25031793

The Effect of Mn3+ Substitution on the Electric Field Gradient in a HoFe1−xMnxO3 (x = 0–0.7) System

Yuriy V. Knyazev, Maksim S. Pavlovskii, Timofei D. Balaev, Sergey V. Semenov, Stanislav A. Skorobogatov, Aleksey E. Sokolov, Denis M. Gokhfeld and Kirill A. Shaykhutdinov
Crystals 14 (12) 1025 (2024)
https://doi.org/10.3390/cryst14121025

Fe ion valence states and oxygen vacancies in the La0.5Sr0.5FeO3-γ ferrite under vacuum annealing

V. Sedykh, V. Rusakov, O. Rybchenko, A. Gapochka, K. Gavrilicheva, O. Barkalov, S. Zaitsev and V. Kulakov
Ceramics International 49 (15) 25640 (2023)
https://doi.org/10.1016/j.ceramint.2023.05.105

The Interrelation between Iron Valence and Oxygen Vacancies in Substituted Orthoferrite La0.67Sr0.33FeO3– during Heat Treatment

V. D. Sedykh, V. S. Rusakov, T. V. Gubaidulina, O. G. Rybchenko and V. I. Kulakov
Физика металлов и металловедение 124 (2) 161 (2023)
https://doi.org/10.31857/S0015323022601465

The Interrelation between Iron Valence and Oxygen Vacancies in Substituted Orthoferrite La0.67Sr0.33FeO3 – γ during Heat Treatment

V. D. Sedykh, V. S. Rusakov, T. V. Gubaidulina, O. G. Rybchenko and V. I. Kulakov
Physics of Metals and Metallography 124 (2) 153 (2023)
https://doi.org/10.1134/S0031918X22601950

The effect of ternary additions on the hyperfine interaction parameters at Fe nuclei in the Fe50Al50 compound: First-principles calculations

Carlos Ariel Samudio Pérez and Antônio Vanderlei dos Santos
Physica B: Condensed Matter 613 412998 (2021)
https://doi.org/10.1016/j.physb.2021.412998

61Ni Nuclear Forward Scattering Study of Magnetic Hyperfine Interactions in Double Perovskites A2NiMnO6 (A = Sc, In, Tl)

Alexey V. Sobolev, Iana S. Glazkova, Alena A. Akulenko, et al.
The Journal of Physical Chemistry C 123 (38) 23628 (2019)
https://doi.org/10.1021/acs.jpcc.9b06621

Curie Temperature Enhancement and Cation Ordering in Titanomagnetites: Evidence From Magnetic Properties, XMCD, and Mössbauer Spectroscopy

J. A. Bowles, S.‐C. L. L. Lappe, M. J. Jackson, E. Arenholz and G. van der Laan
Geochemistry, Geophysics, Geosystems 20 (5) 2272 (2019)
https://doi.org/10.1029/2019GC008217

Magnetic Hyperfine Interactions in the Mixed-Valence Compound Fe7(PO4)6 from Mössbauer Experiments

Alexey V. Sobolev, Alena A. Akulenko, Iana S. Glazkova, et al.
The Journal of Physical Chemistry C 122 (34) 19767 (2018)
https://doi.org/10.1021/acs.jpcc.8b05516

Modulated magnetic structure of Fe3PO7 as seen by Fe57 Mössbauer spectroscopy

A. V. Sobolev, A. A. Akulenko, I. S. Glazkova, D. A. Pankratov and I. A. Presniakov
Physical Review B 97 (10) (2018)
https://doi.org/10.1103/PhysRevB.97.104415

Thermodynamic Properties, Mössbauer Study, and First-Principles Calculations of TlFe(MoO4)2

A. V. Sobolev, E. S. Kozlyakova, I. S. Glazkova, et al.
The Journal of Physical Chemistry C 122 (34) 19746 (2018)
https://doi.org/10.1021/acs.jpcc.8b05122

Structure of the local environment and hyperfine interactions of 57Fe probe atoms in DyNiO3 nickelate

V. S. Rusakov, I. A. Presniakov, G. Demazeau, et al.
Bulletin of the Russian Academy of Sciences: Physics 74 (3) 335 (2010)
https://doi.org/10.3103/S106287381003010X

Evidence through Mössbauer spectroscopy of two different states for57Fe probe atoms in RNiO3perovskites with intermediate-size rare earths, R = Sm,Eu,Gd,Dy

I Presniakov, A Baranov, G Demazeau, et al.
Journal of Physics: Condensed Matter 19 (3) 036201 (2007)
https://doi.org/10.1088/0953-8984/19/3/036201

119Sn and 57Fe Mössbauer study of the local structure of perovskite-type ferrites CaFe2 − x N x O5 (N = Sc, Al) and manganite CaMn7O12

A. V. Sobolev, I. A. Presnyakov, K. V. Pokholok, et al.
Bulletin of the Russian Academy of Sciences: Physics 71 (9) 1314 (2007)
https://doi.org/10.3103/S1062873807090274

Emission Mössbauer spectroscopy study of theFe3O4(100)surface andFe3O4/MgO(100)andFe3O4/CoO(100)interfaces

L. A. Kalev, P. Schurer and L. Niesen
Physical Review B 68 (16) (2003)
https://doi.org/10.1103/PhysRevB.68.165407

Structural Distortion and Chemical Bonding in TlFeO3: Comparison with AFeO3 (A=Rare Earth)

Seung-Joo Kim, Gérard Demazeau, Igor Presniakov and Jin-Ho Choy
Journal of Solid State Chemistry 161 (2) 197 (2001)
https://doi.org/10.1006/jssc.2001.9292

Ordered magnetic frustration: XVII. Is BaMnFeF7 frustrated? Mössbauer spectroscopy, magnetic susceptibility, and magnetic structure at 2 K

P. Lacorre, J. Pannetier, J. Pebler, et al.
Journal of Solid State Chemistry 101 (2) 296 (1992)
https://doi.org/10.1016/0022-4596(92)90185-X

Charge transfer satellites and multiplet splitting in X-ray photoemission spectra of late transition metal halides

K. Okada, A. Kotani and B.T. Thole
Journal of Electron Spectroscopy and Related Phenomena 58 (4) 325 (1992)
https://doi.org/10.1016/0368-2048(92)85018-3

Time-differential perturbed-angular-correlation study of hyperfine interactions atCd111(←111In) in α-Fe2O3

Kichizo Asai, Fumitoshi Ambe, Shizuko Ambe, Takuya Okada and Hisashi Sekizawa
Physical Review B 41 (10) 6124 (1990)
https://doi.org/10.1103/PhysRevB.41.6124

Time-differential perturbed-angular-correlation study of hyperfine interactions atCd111in aLi0.5Fe2.5O4single crystal

Kichizo Asai, Takuya Okada, Tokio Yamadaya and Hisashi Sekizawa
Physical Review B 37 (16) 9140 (1988)
https://doi.org/10.1103/PhysRevB.37.9140

Charge-transfer satellites in the 2pcore-level photoelectron spectra of heavy-transition-metal dihalides

Jaehoon Park, Seungoh Ryu, Moon-sup Han and S.-J. Oh
Physical Review B 37 (18) 10867 (1988)
https://doi.org/10.1103/PhysRevB.37.10867

Determination of the electronic structure of transition-metal compounds:2px-ray photoemission spectroscopy of the nickel dihalides

J. Zaanen, C. Westra and G. A. Sawatzky
Physical Review B 33 (12) 8060 (1986)
https://doi.org/10.1103/PhysRevB.33.8060

Charge transfer effects in α-picoline intercalate of FeOCl by Mössbauer spectroscopy

G.A. Fatseas, P. Palvadeau and J.P. Venien
Journal of Solid State Chemistry 51 (1) 17 (1984)
https://doi.org/10.1016/0022-4596(84)90311-6

Electronic-structure calculations, photoelectron spectra, optical spectra, and Mössbauer parameters for the pyritesMS2(M=Fe,Co,Ni,Cu,Zn)

S. Lauer, A. X. Trautwein and F. E. Harris
Physical Review B 29 (12) 6774 (1984)
https://doi.org/10.1103/PhysRevB.29.6774

Theory of hyperfine- and exchange-field distributions in amorphous speromagnets with application to amorphous yttrium iron garnet

M. E. Lines and M. Eibschütz
Physical Review B 30 (3) 1416 (1984)
https://doi.org/10.1103/PhysRevB.30.1416

Pure nuclear reflexes and combined hyperfine interactions in YIG

H. Winkler, R. Eisberg, E. Alp, et al.
Zeitschrift f�r Physik B Condensed Matter 49 (4) 331 (1983)
https://doi.org/10.1007/BF01301594

First-principles theory of antishielding effects in the nuclear quadrupole interaction in ionic crystals: Application toFe57minFe2O3

A. C. Beri, Taesul Lee, T. P. Das and R. M. Sternheimer
Physical Review B 28 (5) 2335 (1983)
https://doi.org/10.1103/PhysRevB.28.2335

Korrelation zwischen Mössbauer‐Isomerieverschiebungen und ESCA‐Bindungsenergien

H. Inoue, E. Fluck, H. Binder and S. Yanagisawa
Zeitschrift für anorganische und allgemeine Chemie 483 (12) 75 (1981)
https://doi.org/10.1002/zaac.19814831210

Ground-state electronic and magnetic properties of MS2−4 derived trinuclear M-Fe-S complexes (M = Mo, W)

A. Simopoulos, V. Papaefthymiou, A. Kostikas, et al.
Chemical Physics Letters 81 (2) 261 (1981)
https://doi.org/10.1016/0009-2614(81)80248-5

Mössbauer study of 57Fe in the pyrite‐type dichalcogenides

Yoshikazu Nishihara and Shinji Ogawa
The Journal of Chemical Physics 71 (9) 3796 (1979)
https://doi.org/10.1063/1.438787

Structural and magnetic properties of N(C2H5)Fe4I4and N(C4H9)Fe4I4from combinedFe57andI129Mössbauer spectroscopies

J. M. Friedt, D. Petridis, J. P. Sanchez, R. Reschke and A. Trautwein
Physical Review B 19 (1) 360 (1979)
https://doi.org/10.1103/PhysRevB.19.360

Band model describing the magnetic properties of Fe2−xMxP1−yAsy type compounds with hexagonal structure

M. Wautelet, A. Gerard and F. Grandjean
Journal of Magnetism and Magnetic Materials 5 (1) 78 (1977)
https://doi.org/10.1016/0304-8853(77)90199-8