Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Integration of Continuous Graphene with Functional Metals — An Electrical Conductor at Ultrahigh Temperature

Wonjune Choi, Chunghwan Kim, Haofan Sun, Hamzeh Kashani, Xinyu Jiang, Jiali Yao, Qiong Nian and Wonmo Kang
Small (2025)
https://doi.org/10.1002/smll.202503249

Material-efficient preparation and thermoelectric properties of metallic NixAu1−x films with large power factor

A. Riss, F. Garmroudi, M. Parzer, C. Eisenmenger-Sittner, A. Pustogow, T. Mori and E. Bauer
Physical Review Materials 8 (9) (2024)
https://doi.org/10.1103/PhysRevMaterials.8.095403

Absorption of transverse spin current in ferromagnetic NiCu: Dominance of bulk dephasing over spin-flip scattering

Youngmin Lim, Shuang Wu, David A. Smith, Christoph Klewe, Padraic Shafer and Satoru Emori
Applied Physics Letters 121 (22) (2022)
https://doi.org/10.1063/5.0120865

Enhanced copper–carbon nanotube hybrid conductors with titanium adhesion layer

Dylan J. McIntyre, Ryan K. Hirschman, Ivan Puchades and Brian J. Landi
Journal of Materials Science 55 (15) 6610 (2020)
https://doi.org/10.1007/s10853-020-04457-1

Superconducting straintronicsviathe proximity effect in superconductor–ferromagnet nanostructures

E. O. Savostin and N. A. Pertsev
Nanoscale 12 (2) 648 (2020)
https://doi.org/10.1039/C9NR06739F

Independence of the Inverse Spin Hall Effect with the Magnetic Phase in Thin NiCu Films

Sara Varotto, Maxen Cosset-Chéneau, Cécile Grèzes, et al.
Physical Review Letters 125 (26) (2020)
https://doi.org/10.1103/PhysRevLett.125.267204

Fully Relativistic Temperature-Dependent Electronic Transport Properties of Magnetic Alloys From the First Principles

David Wagenknecht, Karel Carva and Ilja Turek
IEEE Transactions on Magnetics 53 (11) 1 (2017)
https://doi.org/10.1109/TMAG.2017.2697400

Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID)

J M De Teresa, A Fernández-Pacheco, R Córdoba, et al.
Journal of Physics D: Applied Physics 49 (24) 243003 (2016)
https://doi.org/10.1088/0022-3727/49/24/243003

Antenna-Coupled Nanowire Thermocouples for Infrared Detection

Gergo P. Szakmany, Peter M. Krenz, Alexei O. Orlov, Gary H. Bernstein and Wolfgang Porod
IEEE Transactions on Nanotechnology 12 (2) 163 (2013)
https://doi.org/10.1109/TNANO.2012.2236568

Exchange coupling and magnetoresistance in CoFe/NiCu/CoFe spin valves near the Curie point of the spacer

S. Andersson and V. Korenivski
Journal of Applied Physics 107 (9) (2010)
https://doi.org/10.1063/1.3340509

Thermoelectric properties of electrodeposited CuNi alloys on Si

R. G. Delatorre, M. L. Sartorelli, A. Q. Schervenski, A. A. Pasa and S. Güths
Journal of Applied Physics 93 (10) 6154 (2003)
https://doi.org/10.1063/1.1569432

Magnetic and electrical transport properties of electrodeposited Ni-Cu alloys and multilayers

I Bakonyi, E Tóth-Kádár, J Tóth, et al.
Journal of Physics: Condensed Matter 11 (4) 963 (1999)
https://doi.org/10.1088/0953-8984/11/4/004

Alloys and Compounds of d-Elements with Main Group Elements. Part 1

G. Zibold
Landolt-Börnstein - Group III Condensed Matter, Alloys and Compounds of d-Elements with Main Group Elements. Part 1 19b 41 (1987)
https://doi.org/10.1007/10350805_9

Alloys and Compounds of d-Elements with Main Group Elements. Part 1

G. Zibold
Landolt-Börnstein - Group III Condensed Matter, Alloys and Compounds of d-Elements with Main Group Elements. Part 1 19b 139 (1987)
https://doi.org/10.1007/10350805_16

Alloys and Compounds of d-Elements with Main Group Elements. Part 1

G. Zibold
Landolt-Börnstein - Group III Condensed Matter, Alloys and Compounds of d-Elements with Main Group Elements. Part 1 19b 56 (1987)
https://doi.org/10.1007/10350805_10

Electrical Resistivity, Thermoelectrical Power and Optical Properties

C. L. Foiles
Landolt-Börnstein - Group III Condensed Matter, Electrical Resistivity, Thermoelectrical Power and Optical Properties 15b 206 (1985)
https://doi.org/10.1007/10201705_28

Electrical Resistivity, Thermoelectrical Power and Optical Properties

C. L. Foiles
Landolt-Börnstein - Group III Condensed Matter, Electrical Resistivity, Thermoelectrical Power and Optical Properties 15b 59 (1985)
https://doi.org/10.1007/10201705_11

Electrical Resistivity, Thermoelectrical Power and Optical Properties

C. L. Foiles
Landolt-Börnstein - Group III Condensed Matter, Electrical Resistivity, Thermoelectrical Power and Optical Properties 15b 180 (1985)
https://doi.org/10.1007/10201705_26

Electrical Resistivity, Thermoelectrical Power and Optical Properties

C. L. Foiles
Landolt-Börnstein - Group III Condensed Matter, Electrical Resistivity, Thermoelectrical Power and Optical Properties 15b 102 (1985)
https://doi.org/10.1007/10201705_16

Electrical Resistivity, Kondo and Spin Fluctuation Systems, Spin Glasses and Thermopower

K. H. Fischer
Landolt-Börnstein - Group III Condensed Matter, Electrical Resistivity, Kondo and Spin Fluctuation Systems, Spin Glasses and Thermopower 15a 377 (1982)
https://doi.org/10.1007/10307022_47

Electrical Resistivity, Kondo and Spin Fluctuation Systems, Spin Glasses and Thermopower

K. H. Fischer
Landolt-Börnstein - Group III Condensed Matter, Electrical Resistivity, Kondo and Spin Fluctuation Systems, Spin Glasses and Thermopower 15a 326 (1982)
https://doi.org/10.1007/10307022_40

Sub-band resistivities of concentrated nickel alloys and spontaneous resistivity anisotropy

P Muth and V Christoph
Journal of Physics F: Metal Physics 11 (10) 2119 (1981)
https://doi.org/10.1088/0305-4608/11/10/022