La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
C. Roucau
J. Phys. Colloques, 44 C3 (1983) C3-1725-C3-1728
Citations de cet article :
25 articles
Effect of the Deformation on the Conductivity of the Quasi-One-Dimensional Conductor K0.3MoO3 in the Peierls State
S. G. Zybtsev, V. Ya. Pokrovskii and S. V. Zaitsev-Zotov JETP Letters 121 (3) 189 (2025) https://doi.org/10.1134/S002136402460513X
Interaction between Charge Density Waves in the Monoclinic Phase of NbS3
V. Ya. Pokrovskii, A. L. Vasiliev, N. B. Bolotina, A. G. Ivanova, S. V. Zaitsev-Zotov, S. G. Zybtsev and A. A. Sinchenko JETP Letters 121 (5) 391 (2025) https://doi.org/10.1134/S0021364025600156
Revisitation of the Lock-In Transition in One-Dimensional Charge-Density Waves
Katsuhiko Inagaki, Keiji Nakatsugawa and Satoshi Tanda Journal of the Physical Society of Japan 93 (8) (2024) https://doi.org/10.7566/JPSJ.93.083702
Enhanced Electron Heat Conduction in TaS3 1D Metal Wire
Hojoon Yi, Jaeuk Bahng, Sehwan Park, Dang Xuan Dang, Wonkil Sakong, Seungsu Kang, Byung-wook Ahn, Jungwon Kim, Ki Kang Kim, Jong Tae Lim and Seong Chu Lim Materials 14 (16) 4477 (2021) https://doi.org/10.3390/ma14164477
Thermoelectric power and its correlation with conductivity in
NbS3
whiskers
S. G. Zybtsev, V. Ya. Pokrovskii, V. F. Nasretdinova, et al. Physical Review B 99 (23) (2019) https://doi.org/10.1103/PhysRevB.99.235155
Pressure-induced reentrant transition in
NbS3
phases: Combined Raman scattering and x-ray diffraction study
M. Abdel-Hafiez, R. Thiyagarajan, A. Majumdar, et al. Physical Review B 99 (23) (2019) https://doi.org/10.1103/PhysRevB.99.235126
Multiple charge density waves compete in ternary rare-earth nickel carbides,
RNiC2(R:Y,Dy,Ho,andEr)
Hiroyuki Maeda, Ryusuke Kondo and Yoshio Nogami Physical Review B 100 (10) (2019) https://doi.org/10.1103/PhysRevB.100.104107
Monoclinic structures of niobium trisulfide
Matthew A. Bloodgood, Pingrong Wei, Ece Aytan, et al. APL Materials 6 (2) (2018) https://doi.org/10.1063/1.5005813
Lock-in transition of charge density waves in quasi-one-dimensional conductors: Reinterpretation of McMillan's theory
Katsuhiko Inagaki and Satoshi Tanda Physical Review B 97 (11) (2018) https://doi.org/10.1103/PhysRevB.97.115432
Quantization of states and strain-induced transformation of charge-density waves in the quasi-one-dimensional conductorTaS3
S. G. Zybtsev and V. Ya. Pokrovskii Physical Review B 94 (11) (2016) https://doi.org/10.1103/PhysRevB.94.115140
Anisotropic magnetoresistance of charge-density wave ino−TaS3
Katsuhiko Inagaki, Toru Matsuura, Masakatsu Tsubota, et al. Physical Review B 93 (7) (2016) https://doi.org/10.1103/PhysRevB.93.075423
Charge density wave soliton liquid
T. Matsuura, J. Hara, K. Inagaki, et al. EPL (Europhysics Letters) 109 (2) 27005 (2015) https://doi.org/10.1209/0295-5075/109/27005
Field-Induced Discommensuration in Charge Density Waves ino-TaS3
Katsuhiko Inagaki, Masakatsu Tsubota, Kazuki Higashiyama, et al. Journal of the Physical Society of Japan 77 (9) 093708 (2008) https://doi.org/10.1143/JPSJ.77.093708
Visualizing the spatial structure of charge density waves via scanning electron microscopy
G. Heinz, J. Parisi, V.Ya. Pokrovskii and A. Kittel Physica B: Condensed Matter 315 (4) 273 (2002) https://doi.org/10.1016/S0921-4526(02)00471-4
Sliding charge density wave in the monophosphate tungsten bronze(PO2)4(WO3)2mwith alternate stacking ofm=4andm=6WO3layers
P. Foury-Leylekian, E. Sandré, S. Ravy, et al. Physical Review B 66 (7) (2002) https://doi.org/10.1103/PhysRevB.66.075116
Scanning tunneling microscopy of the charge-density wave in orthorhombicTaS3
G. Gammie, J. S. Hubacek, S. L. Skala, et al. Physical Review B 40 (17) 11965 (1989) https://doi.org/10.1103/PhysRevB.40.11965
The dynamics of charge-density waves
G. Grüner Reviews of Modern Physics 60 (4) 1129 (1988) https://doi.org/10.1103/RevModPhys.60.1129
Theory of charge-density-wave dynamics
J. R. Tucker, W. G. Lyons and G. Gammie Physical Review B 38 (2) 1148 (1988) https://doi.org/10.1103/PhysRevB.38.1148
An approach to the structure of incommensurately modulated NbS3type II
A Prodan, A Budkowski, F W Boswell, et al. Journal of Physics C: Solid State Physics 21 (23) 4171 (1988) https://doi.org/10.1088/0022-3719/21/23/005
Charge density wave transport in inorganic linear chain compounds
J. Dumas Revue de Physique Appliquée 22 (5) 309 (1987) https://doi.org/10.1051/rphysap:01987002205030900
Competition of Peierls instabilities induced by band-structure effects in quasi-one-dimensional conductors
C Noguera Journal of Physics C: Solid State Physics 19 (13) 2161 (1986) https://doi.org/10.1088/0022-3719/19/13/008
Low-temperature divergence of the charge-density-wave viscosity inK0.30MoO3, (TaSe4)2I, andTaS3
R. M. Fleming, R. J. Cava, L. F. Schneemeyer, E. A. Rietman and R. G. Dunn Physical Review B 33 (8) 5450 (1986) https://doi.org/10.1103/PhysRevB.33.5450
Measurement of the Charge-Density-Wave Gap of NbSe3from Tunnel-Junction Spectra
A. Fournel, J. P. Sorbier, M. Konczykowski and P. Monceau Physical Review Letters 57 (17) 2199 (1986) https://doi.org/10.1103/PhysRevLett.57.2199
Charge-density wave transport
J. C. Gill and H. H. Wills Contemporary Physics 27 (1) 37 (1986) https://doi.org/10.1080/00107518608210997
Commensurate-incommensurate transition in the charge-density-wave state ofK0.30MoO3
R. M. Fleming, L. F. Schneemeyer and D. E. Moncton Physical Review B 31 (2) 899 (1985) https://doi.org/10.1103/PhysRevB.31.899